Proofs recap and exercises.

Please also see documents linked on the Resources page. Let's say we already have some basic definitions lying around, eg, A mammal is defined as a warm-blooded animal.

- "By example:" eg. Theorem 1. Mammals exist.

Proof. At least one human exists. Humans are mammals.

- "Direct proof:" (apply definitions \& use logic). eg. Theorem 2. Human x is warm-blooded.

Proof. Humans are mammals. Mammals are warm-blooded.

- "By contradiction:" (assume the opposite of the claim and derive something impossible). Eg. prove Theorem 2 a different way:

Proof. Assume x is cold-blooded. Then a mammal would be cold-blooded, which contradicts the definition of mammal.

- "By contrapositive:" eg. Theorem 3. Let x be an animal and let x be cold-blooded. Then x is not a human.
The form is $A \Rightarrow B$. We use $\neg A$ to mean "not A ", ie the statement A doesn't hold. Then $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$, which is called the contrapositive. Why equivalent? Check the 2×2 matrix of possibilities of A being false or true, and B being false or true. The theorem and its contrapositive both exclude " A and $\neg B$ " but allow the other three possibilities.
Let's use it.
Proof. $\neg B$ is " x is a human". $\neg A$ is " x is warm-blooded." But the implication " x is a human $\Rightarrow x$ is warm-blooded" is precisely Theorem 2 above, which we already proved.

Exercises (relevant to Sec 1.4, 1.5): Prove using what you know so far, state the proof type:

1. Let A be a square matrix. If $A \mathbf{x}=\mathbf{b}$ is consistent for all RHS (right hand sides) \mathbf{b}, then the solution is always unique.
2. Let A be any $m \times n$ matrix. Then the linear system $A \mathbf{x}=\mathbf{0}$ is consistent.
3. Let $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$, then $n \geq m$. (A more chatty version is: "You need at least m vectors to span $\mathbb{R}^{m "}$. But note you have to handle the more dry language too.)

Solutions to exercises:

1. "Direct" proof: Consistent for all RHS \Rightarrow pivot in every row (from lecture). Square and pivot in every row \Rightarrow pivot in every column. Combining the last two, we have there is a pivot in every column. This implies uniqueness, whatever the RHS actually is.
There is also a "contrapositive" version which is the negation of each step in reverse order.
2. Proof "by example": $\mathbf{x}=\mathbf{0}$ is a solution.
3. Proof "by contradiction": Suppose $n<m$ vectors did span \mathbb{R}^{m}, then there would be a pivot in every row, thus at least m pivots. But there can be at most one pivot in each of the n columns. Contradiction.
