
CHAPTER3
Proof Techniques

3.1 A Case for Proof

Towards the end of the first chapter we met Bertrand’s Postulate, which states
that for all n ≥ 2 there is a prime between n and 2n. We verified this claim for
values of n from n = 2 through n = 10. One could easily extend this list by
hand to values of n in the hundreds or even thousands, or to much higher values
with the aid of a computer. In fact, the further one goes, the more plausible
the theorem becomes—for instance, there are no less than 135 primes between
1000 and 2000. The list looks like

1009, 1013, 1019, 1021, . . . , 1987, 1993, 1997, 1999.

At this point most of us would happily agree that Bertrand’s Postulate is un-
doubtedly correct. However, we would also concede that we have not really
proved that Bertrand’s Postulate is true; only convinced ourselves that it is.
Before we consider what constitutes a mathematical proof, we should reflect for
a moment on why one should pursue a proof of Bertrand’s Postulate at all.

There are a number of answers to this question. One reason that is often
forwarded goes along the lines of “You can never be sure.” It is true that there
are examples of simple, appealing open sentences that are true for a great many

values of n, only to succumb to an unexpectedly large
counterexample—the next Mathematical Outing reveals
one such faulty conjecture. Examples such as this il-
lustrate the importance of backing up assertions with
proof. Besides, few would debate that a result must
be rigorously established before it may attain the hon-
ored status of theorem. But to be honest, promising
statements that turn out to be false occur relatively in-
frequently. And even professional mathematicians are
willing to accept and implement unproven results when
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Mathematical Outing � � �
Make a list of the first twenty-four odd primes:
3, 5, 7, . . . , 89, 97. Now go back through the
list and circle all the primes that are one less than
a multiple of four (such as 3 or 47) and box all
the primes that are one more than a multiple of four (such as 5 or 29). Study
the distribution of circles and boxes and make three conjectures based on the
questions below.

• How many circled primes are there among all the positive integers?

• How do the number of primes of each type compare up to any point?

• How do the number of primes of each type compare in the long run?

Finally, guess which of your conjectures are in fact true.

there is overwhelming evidence in their favor. Perhaps the best known example
is the Riemann Hypothesis, which predicts the nature of the solutions to

ζ(s) =
1
1s

+
1
2s

+
1
3s

+
1
4s

+ · · · = 0,

where ζ(s) is the Riemann-zeta function. It is not uncommon for a published
theorem to include a sentence along the lines of, “We assume that the Riemann
Hypothesis is true.” The mathematical community expectantly awaits a proof;
the possibility of a disproof is more or less out of the question.

All of this brings us back to the issue of why we bother to prove statements
that we already believe to be correct. The more compelling reason is that we,
as mathematicians, are even more interested in understanding why numbers
(or geometric diagrams, or other mathematical objects) behave in the way that
they do than we are in discovering fascinating relationships in the first place.
Coming up with an intriguing question or stumbling upon a nice result is excit-
ing, but represents only the initial stage of an investigation. It is in the quest
for an explanation that one begins to truly understand the principles govern-
ing fascinating mathematical observations, and it is in the careful writing of a
proof that one certifies this understanding to oneself (and others). Individuals
who are drawn to math often mention that they are attracted to the potential
for absolute certainty; to the satisfaction that an irrefutable proof provides.

The data suggests that there are infinitely many circled primes,
that up to any given point there are at least as many circled primes
as boxed primes, and that there are approximately “the same num-

ber” of each type. The first and the third conjectures are indeed true, although not
particularly easy to prove. The second looks good for a very long time, but ultimately
falls through. The smallest counterexample occurs for the prime n = 26861, at which
point the boxed primes outnumber the circled primes for the first time.
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3.2 Mathematical Writing

Mastering the craft of writing a good proof takes both practice and guidance.
Just as with learning any new language, there is initially a high potential barrier
to mathematical writing. One must become accustomed to certain conventions,
learn how to use notation correctly, absorb a new vocabulary, master a set of
proof techniques, increase ones level of rigor, and more. Nonetheless, this skill
is well within the reach of the willing student.

The backbone of any good proof is a complete, watertight argument. Since
the mathematical methods for achieving this depend a great deal on the type of
problem under consideration, we will relegate the discussion of what constitutes
a rigorous proof in each case to the corresponding section covering that topic.
But we can at least comment upon how much detail to include with a proof.
The general rule of thumb is to provide enough discussion to completely justify
each step, but not so much as to obscure the overall thrust of the argument. In
this respect excellent proofs resemble poetry, in that they say everything that
is necessary in as few words as possible.

There are several ways to achieve brevity in proofs. For starters, effective use
of mathematical notation helps to streamline a discussion. Rather than saying

Version 1: Let x be an element of one of the sets A1 or A2 or A3, except that
we don’t want to have x = 0,”

it is preferable to write

Version 2: Let x ∈ (A1 ∪A2 ∪A3)− {0}.

It is possible to go to an extreme with dense notation, but this is not usually an
issue when one first begins to write proofs. Where possible, one should build on
previous work rather than reproving known results. It is also common for several
cases of an argument to be so similar that it becomes redundant to write out
all the steps for each. When this occurs, it is acceptable and even desirable to
implement phrasing like “In the same manner it follows that. . . ” or “In a similar
fashion we have. . . ” Finally, and most importantly, the strategy one employs
in proving a statement can have a profound effect on the length and clarity of
the proof. It is worth taking the time to look for a clean, elegant approach to a
problem. Beautiful mathematics deserves an equally nice presentation.

Beyond mathematical content, it is important to use good style when writing
a proof. Thus one should employ proper grammar, punctuate correctly, and so
on. In particular, one should write in complete sentences. But there are a
number of issues unique to mathematical writing, that curious blend of regular
words, logical expressions, and mathematical notation which you have by now
become accustomed to reading but which is still very unfamiliar to write. The
list below highlights some points to bear in mind when writing a proof.

1. Structure your proof in the form of one or more paragraphs. It is not
necessary to restate the assertion to be proved, although it does make the
proof more readable. It makes sense to indicate that the claim has yet to
be established, for instance by writing “We will prove that A∩B ⊆ A∪B,”
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rather than by simply stating the assertion “For sets A and B we have
A ∩B ⊆ A ∪B,” as if the result is already known to be true. Regardless,
it is helpful to then lead off with a sentence that summarizes the proof
strategy, as in “We will show that if x ∈ A ∩B then x ∈ A ∪B also.”

2. Take advantage of the abundance of synonyms for common mathematical
terms to add flavor to your writing. For instance, the words establish,
show, explain, and demonstrate may all be used in place of ‘prove.’ It is
also handy to have alternatives for the word ‘therefore.’ Synonyms include
thus, hence, it follows that, so, for this reason, and consequently.

3. The ubiquitous use of the pronoun ‘we’ has probably not escaped your
notice. It is conventional to use ‘we’ instead of ‘I,’ presumably on the
grounds that reading mathematics is intended to be an active rather than
a passive activity. In other words, the reader joins the author as the proof
unfolds, at least in principle. This same philosophy dictates that we write
‘one’ instead of ‘you’ when the writer wishes to refer to a third person.

4. From a grammatical point of view, a mathematical expression functions
as a noun. It can serve as the subject of a sentence, as in “The equation
x2 + 2x− 2 = 0 plays an important role in today’s discussion,” or a direct
object, as in “We complete the square to solve x2 + 2x − 2 = 0,” or the
object of a preposition, as in “Add 3 to both sides of x2 + 2x− 2 = 0.”

5. Avoid beginning a sentence with a mathematical expression. Therefore
it is preferable to write “The equation x2 + 2x − 2 = 0 plays. . . ” rather
than just “x2 + 2x − 2 = 0 plays. . . ” Other examples include “We have
x ∈ A∪B because we know x ∈ A,” as opposed to “x ∈ A∪B because. . . ,”
and saying “We know that n is not prime since n is even and n ≥ 4,” rather
than “n is not prime. . . ” There are a variety of other phrases to facilitate
this practice, most of which one picks up by reading mathematics.

6. As much as possible one should avoid awkward line breaks that split math-
ematical expressions across separate lines. Reading “The equation x2 +2x
− 2 = 0 plays an important role. . . ” is unnecessarily difficult because the
equation is cut in half. This problem occurs primarily when using soft-
ware such as LATEX to prepare a proof and can usually be remedied by the
judicious insertion of a few filler words or a reordering of the sentence.

7. Mathematical definitions, expressions or equations which are particularly
important or lengthy should be displayed by centering them on their own
line. This practice circumvents the potential for bad line breaks, draws
greater attention to the math, and allows more room for writing out bulky
formulas. For these reasons we chose to display the expression

�

r∈J

Br = {x | − 1 < x ≤ 0}

in an earlier section, rather than write
�

r∈J Br = {x | − 1 < x ≤ 0} in
line with the text.
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8. Meaning is clarified by using mathematical terms correctly. For instance,
we solve the equation x2 + 2x − 2 = 0, but we evaluate the expression
5n + 1 when n = 16. (The difference being that in the former situation
there is an = sign, in the latter case there is not.)

9. Finally, a quick word is in order regarding the use of arabic numerals versus
words for numbers. In general, one should write out the word for a number
when it counts how many of a certain object we have, as in “Three French
hens, two turtle doves and a partridge in a pear tree.” However, utilize an
arabic numeral when referring to a number as an arithmetic object, such
as “Add 3 to both sides of x2 + 2x − 2 = 0.” In some instances either
choice is acceptable—we could turn to page five or to p. 31, for example.
But numerals are preferred for unwieldy numbers, like “101 Dalmatians.”

We conclude this section by considering how to conclude a proof. Any num-
ber of phrases can be used to indicate that the final step has been reached and
that the proof is complete. One might write “. . . as desired,” or “. . . which was
what we wanted,” or simply “This completes the proof.” Traditionally authors
will also include a symbol to visually separate the proof from the ensuing dis-
cussion. Popular choices include the letters ‘QED’ (from the Latin quod erat
demonstratum, ‘that which was to be demonstrated’), a filled box �, or an open
box �. But each person has a unique style and should not feel constrained by
these options, at least initially. Feel free to use a diamond �, a star �, a circled
snowflake �, a boxed plus �, or another symbol of your choosing.

Exercises
1. Rewrite the following sentences to address any short-comings in grammar or
mathematical style that you notice.

a) The sum of 2 3’s and 4 5’s is twenty-six.

b) Let x be a positive real number. x could be ≤ −1 also. x = 0 is OK too.

c) I recommend using a truth table in order to show that ¬(P ∧ Q ∧ R) ≡
¬P ∨ ¬Q ∨ ¬R is a logical equivalence.

d) Their are 3 kinds of people those who can count or those who cant.

e) A ⊇ B can also be written as B ⊆ A.

f) You should
√

both sides of x2 = 36 to solve the formula.

g) f(x) = x2 and g(x) = 3x + 4 means f(x) = g(x) = x = 4.

h) A ∪B contains more numbers than B as long as B is not a subset of A.

i) Did you know that
�

6
12 + 6

22 + 6
32 + 6

42 + · · · equals π?
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3.3 Sudoku Interlude

The purpose of this short section is partly to anticipate some of the techniques
that will be introduced in subsequent sections, partly to engage in logical think-
ing, and partly to have fun with a clever puzzle.1 Your goal is to fill in each
square of the 5× 5 grid below with one of the digits from 1 to 5 in such a way
that each row, each column, and each pentomino contains all five digits exactly
once. (A pentomino consists of five squares joined along their edges. Five dif-
ferent pentominoes are highlighted in the grid below.) The reader is invited to
find the unique answer before reading the partial explanation that comes next.

We’ll do the first few steps together to illustrate the sorts of deductions
that one might utilize in order to solve this puzzle. Although not immediately
obvious, the square labeled y is a promising place to start. Since the pentomino
along the right-hand side already contains a 2, we cannot place a 2 in the squares
e, j, o nor t. But a 2 must appear in the fifth column, so it can only show up
in square y. We will write y = 2 to indicate this fact.

Because a 5 and 1 already appear in the pentomino in the lower left corner,
we can only have w = 2, 3 or 4. But there is already a 2 in the fifth row and a 3 in
the third column, so by process of elimination we must have w = 4. Technically

1The author learned of this sort of miniature Sudoku puzzle from Scott Kim, one of the

most creative designers of original puzzles around. Visit www.scottkim.com to enjoy more of

his delightful work.
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speaking, we are considering five separate cases for square w. Four of them lead
to an “illegal” configuration of numbers, so if there is a solution it must involve
writing a 4 in square w. Using process of elimination again, we can now easily
find that p = 2, u = 3 and x = 5.

The stage is now set to demonstrate yet another strategy for solving Sudoku
puzzles (or proving mathematical statements). We will argue that b �= 2 by
showing that if we do place a 2 in square b, then we are led to an illegal
configuration. So suppose that b = 2. Now consider the third column. It must
contain a 2, but due to the positions of the four 2’s already placed we can only
have m = 2. But this results in the middle top pentomino containing two 2’s!
Since b = 2 leads to trouble, we conclude that b �= 2. We leave the enjoyable
task of deducing the contents of the remaining squares to the reader.

Exercises
2. Finish solving the Sudoku puzzle that appears in this section.

3. Make a copy of the Sudoku board shown above but do not write any digits
into the grid yet. Now find a way to fill in the squares, following the same rules
as before, so that squares c, l, i, p and y do not all contain the same digit.
(This will ensure that your solution is not equivalent to the previous one.)

Writing
4. Complete the written solution begun in this section. You may utilize the
notation introduced above, and do not need to repeat any steps already pre-
sented. You may also assume that your reader is an intelligent human being
who is familiar with Sudoku. Your goal is to write as efficient a solution as
possible without skipping any steps.

5. The Sudoku puzzle from this section has a unique solution. Explain why at
least four squares had to be given as clues in order for the solution to be unique.

Further Exploration
6. Create your own 5 × 5 pentomino Sudoku puzzle. Convention dictates that
your puzzle should have a unique solution. Try to give no more than five clues.

3.4 Indirect Proofs

The majority of the mathematical arguments seen thus far have been direct
proofs. In this sort of proof each step builds on previous steps or on given facts,
in an orderly and logical manner, until the desired conclusion is reached. The
techniques used within a direct proof will vary widely from one type of problem
to another, but the overall approach is the same: make a sequence of logical
deductions starting with the premises, culminating in the result to be proved.
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However, at times a direct argument is insufficient or undesirable, particu-
larly when one wishes to prove a negative result; i.e. that something does not
occur. To illustrate, consider the following assertion from set theory.

“For arbitrary sets A, B and C, if A−C �⊆ A−B,
then it follows that B �⊆ C.” (∗)

In this case an attempt at a direct proof becomes overly complicated at best,
and flounders at worst. We have a strategy for approaching a statement such
as B ⊆ C, but how do we deal with B �⊆ C? More generally, how do we deduce
one negative statement from another? In this case the obstacle is not that we
are lacking tools for dealing with set theory, but rather that we need a whole
new proof technique for handling negative statements.

a) Suppose that A = {1, 2, 3, 4, 5, 6} and C = {1, 2, 3, 4}. Find a set
B such that A− C �⊆ A−B. Is it the case that B �⊆ C for your choice of B?

The key to proving (∗) is to utilize proof by contrapositive. This approach
is motivated and justified by the observation that P ⇒ Q is logically equivalent
to ¬Q ⇒ ¬P . (The routine verification of this fact appears as an exercise.)

The implication ¬Q ⇒ ¬P is the contrapositive of P ⇒ Q. Since these
statements are logically equivalent, to prove that P ⇒ Q it suffices to
demonstrate that ¬Q ⇒ ¬P .

Note that if the implication already contains negatives, then it may be clearer to
think of the original statement as ¬P ⇒ ¬Q and the contrapositive as Q ⇒ P .

This small logical sleight of hand makes a great deal of difference in our
quest to understand (∗). That implication has the form ¬P ⇒ ¬Q, where P
is “A−C ⊆ A−B” and Q stands for “B ⊆ C.”
According to the above discussion, it would be
equivalent to prove that Q ⇒ P ; in other words,
that B ⊆ C implies A−C ⊆ A−B. Now at least
we can picture the statement to be proven with
a Venn diagram, which is set up so that B ⊆ C.
The dark gray region represents A − C, while
the two gray regions together represent A − B.
Although this diagram does not constitute a proof, it seems quite plausible now
that A− C ⊆ A−B. The remainder of the proof is left to the reader.†

b) Formulate the first sentence of a proof that for sets A, B and C,
we have B ⊆ C implies A− C ⊆ A−B.

To further illustrate how one might phrase a proof by contrapositive, let us
examine the relatively simple assertion that if C �⊆ A ∪ B then C �⊆ A. We
will prove the contrapositive of this statement; i.e. we will show that if C ⊆ A
then C ⊆ A∪B. We focus on the conclusion of this if-then statement: we must
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Mathematical Outing � � �
Irrational numbers can behave in unexpected
ways. Suppose that α and β are irrational num-
bers. Which of the following numbers must also
be irrational, according to your intuition? As
much as possible, give specific counterexamples in the remaining cases; in other
words, find irrationals α and β such that the given expression is clearly rational.

7α, β − 4, α + β, α2,
√

β, αβ.

An intriguing fact, which is far from obvious, is that it is possible for αβ to be a
rational number. The clever idea is to take α =

√
2
√

2
and β =

√
2. There are

two options to consider. First suppose that α is irrational. What is the value
of αβ? How does this prove the claim? On the other hand, why would it also
be fine if α turned out to be rational?

show that C ⊆ A ∪ B, which is a set inclusion. So take any element x ∈ C;
since C ⊆ A we deduce that x ∈ A also. Since x ∈ A we know that x ∈ A ∪ B
by definition of union. Because x ∈ C implies x ∈ A ∪ B, we conclude that
C ⊆ A ∪B, as desired.

The second indirect proof technique that we consider is often invoked when
dealing with irrational numbers. Recall that a real number r is a rational number
if it can be written in the form r = m

n for integers m and n with n �= 0. Thus
1
3 , −7 2

5 , 5 and 0 are all rational numbers. A real number that is not equal to
the ratio of two integers is called irrational. In the language of set theory, the
irrationals are the set R−Q. With varying amounts of effort one can prove that
the numbers

√
7, π and e2 are all irrational, among many others.

c) Decide whether or not log7 14 and log8 16 are irrational.

Our intuition suggests that if α is an irrational number, then 3α must be
also. We employ the following strategy to establish this result.

To prove an implication P ⇒ Q using proof by contradiction, assume
that the result (Q) to be proved is in fact false, then combine this assump-
tion with given information (P ) and any other useful true statements to
arrive at a deduction which contradicts a known fact.

The point is that since the result to be proved can’t be false, it must be true.
As we shall see, this approach is particularly effective when attempting to prove
a negative statement; that is, trying to show that some situation cannot occur.
This technique may also be employed to prove a stand-alone statement Q; just
show that ¬Q leads to a deduction that contradicts standard known facts.
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To see this technique in action, let us prove that if α is irrational, then 3α
is also irrational. (Note that we wish to prove a negative statement—that 3α
cannot be written as a fraction.) Suppose to the contrary that 3α is in fact a
rational. Then we can write 3α = m

n for integers m and n. Dividing through
by 3 gives α = m

3n . (We know to perform this step because we want to work
our way back to α algebraically, because we already know something about α.)
Since α = m

3n we see that α can be written as a ratio of integers, contradicting
the fact that α is irrational. Therefore our assumption that 3α is rational cannot
be true, so we conclude that 3α is irrational, as claimed.†

d) It is the case that if β is irrational then
√

β is also irrational.
Write the first two sentences of a proof by contradiction of this fact.

Proof by contradiction is a powerful tool, applicable to a wide range of prob-
lems. To appreciate its versatility, consider the following curious arrangement
of squares discovered in 1925 by a secondary school teacher in Poland named
Zbigniew Moron.

Such an arrangement is known as a perfect square dissection; it illustrates how
to dissect a 32×33 rectangle into nine squares, each of which has a different side
length. (It was long thought impossible to obtain a perfect square dissection
of a square, until R. Sprague found a way to do so in 1939 using 55 squares.)
Our purpose here is to explain why the smallest square of any perfect square
dissection must always be situated somewhere in the middle of the arrangement.

Although it is not immediately obvious that we should do so, we employ
proof by contradiction. Thus assume to the contrary that the smallest square
is not located in the middle of the arrangement;
that is, it rests against one of the edges. Now
consider the squares immediately adjacent to
the smallest square on either side. Because they
are larger, their sides extend beyond that of the
smallest square, as shown in the figure at right.
(The same is true if the smallest square happens to be situated in the corner.)
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There must be another square to help fill the space above the smallest square.
But now we reach our contradiction: the other squares are all larger, and so it
is impossible to fit one into the space indicated by the ‘?’. This contradiction
forces us to reject the possibility that the smallest square rests against an edge.
Therefore we conclude that the smallest square must appear in the middle of
the configuration of squares, as claimed.

a) One possibility is B = {3, 5}, since in this case A − C = {5, 6}
while A−B = {1, 2, 4, 6}, and clearly the former set is not a subset
of the latter set. As expected, B �⊆ C.

b) “To prove A−C ⊆ A−B we must show that for any x ∈ A−C we have x ∈ A−B.”
c) We calculate log7 14 ≈ 1.356207187108 and log8 16 ≈ 1.333333333333, so log7 14
appears to be irrational, while log8 16 seems to equal 4

3 .
d) “Assume to the contrary that

√
β is rational. Then we may write

√
β = m

n for
integers m and n.”

The numbers 7α, β − 4, and
√

β must also be irrational. However, if we choose
α = 3 +

√
2 and β = 3 −

√
2, then α + β = 6, which is rational. Similarly, taking

α =
√

7 gives α2 = 7, a rational. Finally, letting α = π and β = 1
π we find αβ = 1.

We compute αβ =
√

2
√

2·
√

2
=
√

2
2

= 2, using standard laws of exponents.
Hence αβ is rational, as desired. If α happens to rational, then we would conclude

that
√

2
√

2
is rational, so either way we discover that it is possible for an irrational

raised to an irrational power to be rational.

Exercises
7. Validate the technique of proof by contrapositive by showing that P ⇒ Q is
logically equivalent to ¬Q ⇒ ¬P .

8. State the contrapositive of each of the following implications. Then decide
whether you would prefer to prove the original statement or the contrapositive.
(You do not actually need to prove these statements.)
a) Let m and n be positive integers. Prove that if m3 is not divisible by n3,
then m is not divisible by n.
b) Show that for a real number x, if x > 1 then 3x > 3x.
c) For finite sets A and B, prove that if A �⊆ B then |A| ≥ 1.
d) If all the sides of a triangle have different lengths, then all of its angles have
different sizes.

9. How would a proof by contradiction of the following statements begin? Write
at least the first sentence. Include more sentences where possible.
a) The number

√
7 is irrational.

b) There are infinitely many primes.
c) If five sisters split up 2000 grams of chocolate, then at least one of the sisters
receives 400 or more grams of chocolate.
d) Given four non-collinear points in the plane, there exist three points which
form an angle measuring 90◦ or more.
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10. For each statement determine which type of proof is most likely to succeed:
a direct proof, a proof by contrapositive, or a proof by contradiction.
a) Prove that there do not exist a, b, c ∈ N such that a3 + b3 = c3.
b) For sets A and B, prove that if A ∪B �= ∅ then either A �= ∅ or B �= ∅.
c) For x, y ∈ R, prove that if x + y = 7 and xy = 10, then x2 + y2 = 29.
d) If 2n − 1 is not divisible by 7, then n is not a multiple of 3.
e) For sets A, B and C show that P(A) ∪ P(B) ∪ P(C) ⊆ P(A ∪B ∪ C).
f) If x and y are positive real numbers then x

x+2y ≥
1
3 or y

y+2x ≥
1
3 .

Writing

11. For sets A and B prove that if A×B = ∅ then either A = ∅ or B = ∅.

12. For sets A, B and C demonstrate that if A �⊆ B ∪ C then A−B �⊆ C.

13. Let A, B and C be sets such that A ⊆ B ∩ C. Prove that B ∪ C ⊆ A.

14. Explain why stating that B �⊆ C is equivalent to saying that there exists an
element x such that x ∈ B but x �∈ C. Use this idea to find a direct proof of (∗).

15. Let x be a real number. Prove that if x3 + 5x = 40 then x < 3. (Do not use
a calculator to solve for x; rather, find a “pencil-and-paper” proof.)

16. Prove that for real numbers x and y, if x �= y then x
2x−1 �=

y
2y−1 .

17. Prove that if x, y ∈ R are positive then x
x+2y ≥

1
3 or y

y+2x ≥
1
3 .

18. Let β be an irrational number. Use proof by contradiction to prove that
β − 4 is also irrational.

19. Let β be an irrational number. Employ proof by contrapositive to prove
that

√
β is also irrational.

20. Prove that there is no positive rational number that is smaller than all other
positive rational numbers.

21. Let A, B and C be finite nonempty sets such that P(A) ∪ P(B) = P(C).
Prove that either A = C or B = C.

Further Exploration

22. Now that we have alluded to the fact that there exists a perfect square
dissection of a square, it is natural to wonder whether or not there exists a
perfect cube dissection of a cube. In other words, is it possible to begin with
an m ×m ×m cube, for some m ∈ N, and dissect it into a finite collection of
smaller cubes whose side lengths are distinct positive integers? Surprisingly, the
answer is no! The proof relies on the ideas presented in this section. Once you
understand the argument, adapt it to decide whether or not there exist perfect
cube dissections of l ×m× n rectangular boxes.
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3.5 Biconditional, Vacuous and Trivial Proofs

In this section we consider three more types of proof. The first is quite impor-
tant, while the next two do not crop up very often. We begin with proofs of
biconditional statements, written as P ⇐⇒Q in logical notation. Recall that
these statements may be phrased as “P if and only if Q” or “P is necessary and
sufficient for Q” or “P is equivalent to Q.” Earlier we established the logical
equivalence of P ⇐⇒Q and (P ⇒ Q) ∧ (Q ⇒ P ), which gives us the following
proof strategy.

To prove that two statements P and Q are equivalent, one must prove
that each statement implies the other. Thus to prove a result of the form
“P if and only if Q,” one should show that P ⇒ Q and that Q ⇒ P ,
utilizing whichever proof techniques are most applicable in each case.

a) Suppose that P , Q and R are statements such that P⇐⇒Q and
Q⇐⇒R. What can be said about statements P and R?

To illustrate the structure of a biconditional proof we will show that for sets
A and B we have A ∪B = B if and only if A ⊆ B.

Step one: We first show that A∪B = B implies A ⊆ B. We need to prove a set
inclusion (namely, that A ⊆ B), so our strategy will be to prove that if x ∈ A
then x ∈ B. So suppose that x ∈ A. Then clearly x ∈ A ∪ B by definition of
union. Since A ∪B = B, it follows that x ∈ B, which was what we wanted.

Step two: We prove the converse, which states that A ⊆ B implies A ∪B = B.
This time we must prove a set equality (namely, that A ∪ B = B), so we must
argue that if x ∈ A∪B then x ∈ B and vice-versa. So suppose that x ∈ A∪B;
then either x ∈ A or x ∈ B. In the former case, we deduce that x ∈ B since
A ⊆ B. Hence x ∈ B in either case, as desired. It remains to show that if x ∈ B
then x ∈ A ∪ B, but this is clear by definition of union. Hence A ∪ B = B as
claimed, which completes the entire proof.†

Since the main challenge in constructing this argument is keeping track of where
we are in the proof, we also present the overall flow of the proof in outline form
in Figure 3.1, to help clarify its logical structure.

Biconditional statements provide the appropriate language when we wish to
characterize a certain class of mathematical objects.

A property is said to characterize a certain class of objects if the set of
objects possessing the property is exactly the specified class of objects. To
prove a characterization one must show that an object has the property
if and only if it is a member of the designated class of objects.
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I. A ∪B = B ⇒ A ⊆ B
A. Proof that A ⊆ B
B. Suppose x ∈ A
C. Deduce x ∈ A ∪B
D. Use A ∪B = B
E. Conclude x ∈ B

II. A ⊆ B ⇒ A ∪B = B
A. Proof that A ∪B = B
B. If x ∈ A ∪B then x ∈ B

1. Suppose x ∈ A ∪B
2. Case one: x ∈ A

a. Use A ⊆ B
b. Deduce x ∈ B

3. Case two: x ∈ B
4. Either way x ∈ B

C. If x ∈ B then x ∈ A ∪B
1. Clear by defn of union

Figure 3.1: Proof that A ∪B = B ⇐⇒ A ⊆ B

For instance, the class of objects might be a certain set of numbers, such as
primes, or a particular set of geometric figures, such as parallelograms. Although
the concept of characterization might seem to be abstract, it is actually a very
familiar idea. Thus taxonomists characterize birds as the set of animals having
feathers. To arrive at this characterization, a taxonomist mentally reviews the
collection of all birds and searches for a property or feature which every bird
possesses but which no other animal shares. The property of having feathers is
a suitable choice, since an animal has feathers if and only if it is a bird.

b) Give two different reasons why the property of being able to fly
is not a valid means of characterizing animals that are birds.

Most students have also encountered the concept of characterization in their
high school geometry course. A standard exercise involves showing that the class
of quadrilaterals known as parallelograms may be char-
acterized by the condition that each diagonal bisects
the other. To prove that this condition does in fact
characterize parallelograms one must show that if
ABCD is a parallelogram then diagonals AC and BD
bisect one another, and conversely that if diagonals AC and BD bisect one
another then ABCD is a parallelogram.

c) What class of quadrilaterals is characterized by the property that
the diagonals bisect one another and are also perpendicular?

In the same manner, Wilson’s Theorem provides a characterization of primes.
We have seen (although not proved) that an integer n ≥ 2 is a prime if and only
if (n−1)!+1 is a multiple of n. Hence primes are characterized by the property
that n divides evenly into (n − 1)! + 1. (By the way, this is not an especially
practical characterization of primes. There are far more efficient means of testing
whether a number such as 2011 is prime than to compute 2010! + 1.) To prove
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Wilson’s Theorem it turns out to be more convenient to prove that if n is prime
then (n− 1)! + 1 is a multiple of n, while if n is not prime then (n− 1)! + 1 is
not a multiple of n. This suggests the following alternate strategy to proving
biconditional statements, whose validity we will confirm in the exercises.

To prove that the biconditional statement P ⇐⇒Q holds, it suffices to
prove both P ⇒ Q and ¬P ⇒ ¬Q.

We will now dramatically change gears by considering two very different
types of proofs. To illustrate them, consider the somewhat fanciful claims

1) If pigs can fly then I can run a six-minute mile.
2) If I’m on time for class then the pope is Catholic.

d) To review, what is the only way an implication can fail to be
true? In light of this, which of the above statements are true, and why?

n P Q P ⇒ Q

1 T T T
2 T T T
3 F F T
4 T T T
5 F F T
6 F F T
7 F T T
8 T F F

One means of ascertaining that a statement of the
form “For all n we have P ⇒ Q” is true would be to
make a list of the truth values of P and Q for each value
of n and then to search for an instance in which P is
true but Q is false. Such a list is shown at right for the
statement “For all positive integers n, if n is a power
of 2 then 8n − 7 is a perfect square.” (So P represents
“n is a power of 2” and Q stands for “8n−7 is a perfect
square.) It becomes apparent when we reach n = 8 that
this statement is not true for all n.

However, suppose that in the process of investigating an implication P ⇒ Q
we were to discover that statement P is always false. Then clearly we would
never encounter an instance in which P was true but Q was false.

If the premise P of an implication P ⇒ Q is always false then we say that
the implication is vacuously true, and by showing that P is always false
we provide a vacuous proof of the statement.

The word ‘vacuous’ literally means ‘void’ or ‘empty.’ Once we have determined
that P is always false there is nothing left to prove; the conclusion Q is irrelevant.
For this reason the first statement above is vacuously true.

We encountered a vacuously true statement when we first began studying
subsets. At that point there was some debate over whether or not the empty set
should count as a subset of a given set A. According to the definition, to prove
that ∅ ⊆ A we must show that if x ∈ ∅, then x ∈ A. But the premise of this
implication is always false (there are no elements in the empty set), therefore
the statement is vacuously true.
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Let’s consider the seemingly remarkable claim that for n ∈ N it is the case
that 3n+4 is a perfect square whenever n2 +5n+6 is a prime. This fact seems
astonishing, until we begin to try a few values of n and discover that n2 +5n+6
seems to always factor. This observation affords the following explanation. We
will prove that the statement is vacuously true by showing that n2 + 5n + 6
is never prime. Observe that this expression factors as (n + 2)(n + 3). Since
each factor is 3 or more for n ∈ N, their product cannot be a prime. Hence the
statement is vacuously true.†

There is another situation in which an implication P ⇒ Q is automatically
true; namely, when statement Q is always true. Again, it is clear that we could
never encounter an instance in which P was true but Q was false. For this
reason the second statement above is true, since the pope is definitely Catholic.

If the conclusion Q of an implication P ⇒ Q is always true then we say
that the implication is trivially true, and by showing that Q is always
true we provide a trivial proof of the statement.

This sort of situation is even more rare than a vacuously true statement. The
name also has the potential to misleading: when someone refers to a proof as
‘trivial’ they are usually referring to how easy it was to find rather than to its
logical structure. We mention trivial proofs here for sake of completeness. A
template for writing out a trivial proof may be found in the reference section at
the end of this chapter.

a) It follows that P⇐⇒R; statements P and R are equivalent.
b) There are birds that don’t fly (such as ostriches or penguins) and
non-birds that do fly (such as bats or bumblebees).

c) A quadrilateral possesses this property if and only if it is a rhombus.
d) An implication P ⇒ Q fails only if the premise P is true while the conclusion Q is
false. Hence both statements are true, since the premise of the first statement is false
while the conclusion of the second statement is true.

Exercises
23. An alternate strategy for proving a biconditional statement P ⇐⇒Q is to
prove that P ⇒ Q and that ¬P ⇒ ¬Q. Explain why this approach is valid.

24. Determine whether each biconditional statement given below is true or false.
Briefly justify your answers.
a) An integer a is divisible by 12 if and only if a3 is divisible by 12.
b) Let �ABC be a triangle. We have AB ∼= AC exactly when ∠B ∼= ∠C.
c) For nonempty sets A and B, having A ⊆ B is a necessary and sufficient
condition to ensure that P(A) ⊆ P(B).
d) Let x and y be nonzero real numbers. Then x < y iff 1/x > 1/y.
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25. Give a succinct description of those integers m which are characterized by
the property that m2 − 1 is a multiple of 8.

26. Which numbers are characterized by the property that their decimal expan-
sions either terminate or eventually begin repeating?

27. Write down the two implications which must be proven in order to demon-
strate that linear functions f(x) are characterized by the condition that they
satisfy f(x− a) + f(x + a) = 2f(x) for all a, x ∈ R.

28. Determine a property that characterizes the set of points in the plane situ-
ated on one of the lines y = x or y = −x.

29. Each of the following statements is either vacuously true or trivially true.
Determine which category each assertion belongs to.
a) For all n ∈ N, if n2 + n + 1 is a prime then n2 + 2n + 1 is a perfect square.
b) For all n ∈ N, if 4n + 5 is even then 6n + 7 is a perfect cube.
c) Let x be a real number. If 2x = 0 then 3x = 0 also.
d) For real numbers x and y, if |x + 1| > |y − 2| then |x + y + 1| > −2.
e) If B is the midpoint of AC and C is the midpoint of AB then BC = 4.
f) If points A, B and C satisfy (AB)(BC) = (AC)2 then AB + BC ≥ AC.
g) For finite sets A and B, if |A| < |B|, then it follows that A ⊆ A ∪B.
h) For finite sets A and B, if |A×B| < |B ×A| then |P(A)| < |P(B)|.

Writing
30. Let A and B be sets. Outline the logical structure of a proof that A ⊆ B if
and only if A ∩B = A, as done earlier in this section.

31. Let A and B be sets. Prove that A ⊆ B if and only if A ∩ B = A. (It will
help to complete the previous exercise first.)

32. Given circles C1 and C2, prove that the circumference of C1 is twice the
circumference of C2 exactly when the area of C1 is quadruple the area of C2.

33. Let x and y be nonzero real numbers. Prove that 2
x + 3

y = 1 is equivalent to
(x− 2)(y − 3) = 6.

34. Show that a positive integer a is even if and only if a2 ends with one of the
digits 0, 4 or 6.

35. Prove that for a given nonempty set B, subsets of B are characterized by
the condition that they are disjoint from B.

36. Demonstrate that the real numbers in the interval [−1, 1] are characterized
by the condition that their squares are at least as close to 0 as they are.

37. Write a short, complete proof of each statement below.
a) For all n ∈ N, if n2 + n + 1 is a prime then n2 + 2n + 1 is a perfect square.
b) For real numbers x and y, if |x + 1| > |y − 2| then |x + y + 1| > −2.
c) If B is the midpoint of AC and C is the midpoint of AB then BC = 4.
d) For finite sets A and B, if |A×B| < |B ×A| then |P(A)| < |P(B)|.
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3.6 Conjecture and Disproof

Searching for and discovering interesting results is one of the most exciting
aspects of studying mathematics. The exact process by which this occurs can
be difficult to pin down, though. Noticing patterns or unexpected connections is
something of an art, as is the closely related skill of asking productive questions.
At the risk of over-simplifying, we could say that successful mathematicians
combine diligent exploration of new ideas with well-developed intuition in order
to formulate appealing new results.

To gain some sense of how this process unfolds, let us focus our attention
on a sequence of numbers that ought to contain some interesting mathematics:
the perfect squares. The square numbers from 02 up to 202 are listed below.

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
144, 169, 196, 225, 256, 289, 324, 361, 400

Using what we already know about square numbers as a launching pad, we now
search for patterns and ask ourselves questions, motivated by the conviction that
there are nice relationships among the square numbers waiting to be found.

a) What facts concerning square numbers are you familiar with?
What patterns do you notice among the numbers in the above list? What
questions could you ask about the perfect squares?

For instance, we might already be aware that it is possible to add two squares
and obtain a third square, as in 64 + 225 = 289. Thus we might ask ourselves
whether the sum of two squares can be equal to the sum of two other squares.

Of the many possible directions that this discussion could take us, we choose
to pursue the idea of doubling squares. Experimentation suggests that multi-
plying a positive square by 2 never yields another square. This conjecture turns
out to be true; however, in some cases one can come exceedingly close! For
example we find that 2(25) = 50 = 49 + 1 and, even more impressively, that
2(144) = 288 = 289 − 1. The first five instances in which twice a square dif-
fers from another perfect square by only one are listed below. We organize our
findings in a table to aid in our search for conjectures.

2m2 = n2 ± 1 m n
2(1) = 1 + 1 1 1
2(4) = 9− 1 2 3

2(25) = 49 + 1 5 7
2(144) = 289− 1 12 17
2(841) = 1681 + 1 29 41

At this point several nice patterns begin to emerge. For instance, the sum of
the m and n values in any particular row gives the m value for the next row.

b) Make at least three other conjectures regarding the numbers
appearing above. Use the patterns you notice to predict the next two rows of
the table, then confirm that they do in fact work.
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Mathematical Outing � � �
The investigation described here illustrates a clas-
sic example of the process of making and testing a
conjecture. To experience it for yourself, conduct
the following experiment. Draw a circle, then plot
n irregularly spaced points around its circumference. Next connect every pair of
points with a line segment. For a given value of n, what is the largest number
of regions created within the circle? For instance, using n = 4 points we can
create eight regions, as illustrated at left.

a) Determine the maximum number of regions created by
n = 2, 3, 4 and 5 points.
b) Make a conjecture based on your findings and predict the
number of regions for n = 6 or n = 7.
c) Confirm or refute your conjecture by actually counting
the regions for n = 6 and n = 7.

Observe that what has turned into an interesting investigation began with a
fertile topic (perfect squares), germinated since we asked a good question (what
happens if we double squares), and bore fruit in part due to a well-organized
table. These conditions often accompany the discovery of nice results.

Intriguing, accessible conjectures usually attract enough attention that they
are proven within a relatively short length of time. Occasionally such conjectures
persist for many years before sufficiently powerful techniques or an exceptionally
ingenious approach finally permits a proof. The most famous example concerns
a generalization of our observation above that it is possible
for two squares to sum to a third square. In algebraic terms,
we have observed that there exist positive integers a, b and c
such that a2 + b2 = c2. One might ask whether the same
is possible for higher powers—can we have a3 + b3 = c3 or
a4 + b4 = c4, for example? In 1637 Fermat conjectured that
there are no solutions involving higher powers and managed
to prove that this is the case for fourth powers. Over a cen-
tury later Euler supplied a proof for perfect cubes. However,
it was not until the 1990’s that Wiles and other mathemati-
cians were finally able to establish “Fermat’s Last Theorem” in full generality.

Once one has formulated and tested a promising conjecture, the next step is
usually to find a proof. However, it is not unusual for conjectures to turn out
to be false, in which case one supplies a disproof instead.

To disprove a claim, write the negation of the conjectured statement
and then prove that this negation is true.
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Typically the (false) statement involves a universal quantifier; in other words,
it asserts that “For all . . . , if we have . . . then . . . ” In this case the negation
reads “There exists . . . for which we have . . . but not . . . ” Therefore a disproof
amounts to finding a counterexample: a particular mathematical object sat-
isfying the premise but not the conclusion of the implication.

We have already seen several promising conjectures succumb to counterex-
amples. We present one more in order to carefully apply the above principles.
Consider the claim that “For all n ∈ N, if n is prime then 6n + 1 is also prime.”
To disprove this assertion we first state the negation, “There exists an n ∈ N
such that n is prime but 6n + 1 is not prime.” Thus to find a counterexample
we check each prime value for n in turn to see whether or not 6n + 1 is prime.
With a bit of patience we find that the smallest counterexample is n = 19, since
6n + 1 = 115 is not prime.†

c) Describe what conditions a counterexample must satisfy in order
to disprove the claim that “Given any four points in the plane, there exists a
circle through three of the points containing the fourth point in its interior.”

By the way, it would be inappropriate to begin a disproof with the sentence,
“We will show that this proof is false.” The proof should be sound; it’s the claim
that is false. We also mention that the best response to a conjecture that doesn’t
pan out would be to modify the conjecture and continue exploring, rather than
to shelve the idea. There is hardly ever such a thing as a mathematical dead
end. As we have seen, finding a counterexample often amounts to proving that
there exists some number (or formula, or diagram) satisfying certain conditions.
This task is an important enough mathematical activity that we will devote an
entire section to it, coming up next.

a) Common answers might include the fact that subtracting each
square from the next gives the sequence of odd numbers, or the fact
that squares may only end in the digits 0, 1, 4, 5, 6 or 9. Questions

about squares are virtually limitless. We might ask how many square numbers are also
Fibonacci numbers, or if there is a perfect square involving only the digits 3 and 4, or
whether there is a function which crosses the x-axis precisely at the square numbers,
to mention but a few possibilities.
b) For starters, it appears that the + 1’s and − 1’s alternate down the first column.
Furthermore, the sum of two consecutive m values seems to always give the adjacent
n value. Finally, the sum of an m value and twice the next m value gives another m
value. (The same pattern holds for n values as well.) The next two rows of the table
are m = 70, n = 99 and m = 169, n = 239.
c) We must find four points in the plane such that the circle through any three of
them does not contain the fourth in its interior. This can be accomplished by taking
the points at the vertices of a square, for example.

a) The number of regions formed by n = 2, 3, 4 and 5 points is 2, 4, 8 and 16
regions, respectively. At this point it seems abundantly clear that the answers are
given by powers of 2. More precisely, n points seem to yield 2n−1 regions, so there
will be 32 regions for n = 6 points and 64 regions for n = 7 points. To our dismay, a
carefully diagram reveals that this is not the case! In fact we can obtain at most 31
regions when n = 6 and at most 57 regions when n = 7.
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Exercises
38. Find three pairs of positive integers m and n such that 3m2 = n2 ± 1. Thus
tripling a square can produce a number that is very close to another perfect
square. (The first three values of m are less than 20.)

39. Based on the values found in the previous question, make three conjectures
regarding pairs of numbers (m, n) for which 3m2 = n2 ± 1, and predict the next
two pairs of integers that satisfy this equation.

40. Choose any three positive real numbers x, y and z and compute the values
of x + y + z and 3 3

√
xyz. Repeat this process for three other triples. How do

the two values compare in each case? Make a conjecture based on your results.

41. One of the most famous open conjectures is known as the 3x + 1 problem.
Beginning with any positive integer, divide by 2 if it is even or triple and add 1 if
it is odd. Repeatedly apply this rule to obtain a sequence of numbers. The con-
jecture states that regardless of the initial number the sequence will eventually
reach the number 1. For instance, starting with 17 gives

17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

Confirm the 3x+1 problem for all values of n from 10 to 20. (Observe that the
above sequence already takes care of 10, 13, 16, 17 and 20.)

42. Which positive integers can be written as the difference of two squares?
Make a list of all such numbers from 1 to 20. For instance we have

1 = 12
− 02, 3 = 22

− 12, 4 = 22
− 02, and 5 = 32

− 22.

Make a conjecture about which positive integers (such as 2) are left off this list.

43. Draw a triangle ABC and plot the midpoints L, M and N of sides BC,
AC and AB. Next draw segments AL and BM , crossing at point G. How does
length AG compare to GL? What about BG and GM? Now draw segment
CN . What seems to occur? Make two conjectures based on your observations.

Writing
44. Disprove the assertion that “For positive integers m, if m + 1 and 5m + 1
are both perfect squares, then m = 3.”

45. Show that the following assertion is false: for every quadrilateral ABCD, if
m∠A > m∠B then BD > AC.

46. Find a disproof of the statement, “For real numbers x and y, if x2 + 3x =
y2 + 3y then it follows that x = y.

47. A classmate claims that there exists a perfect square with two or more digits
that immediately follows a prime. Show that he is mistaken.

48. Disprove the claim that there exist four points in the plane all of which are
the same distance from one another.
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Further Exploration
49. Goldbach’s conjecture states that every even number from 4 onwards can be
written as the sum of two primes. Goldbach’s conjecture is almost certainly true.
However, it is possible to concoct similar sorts of conjectures that seem quite
plausible but which fail for a surprisingly large counterexample. For instance,
consider the claim that every odd number from 3 onwards can be written as
the sum of a prime and twice a square.2 Thus 3 = 3 + 2(02), 15 = 13 + 2(12)
and 35 = 17 + 2(32). Write a computer program to disprove this claim. (The
smallest counterexample lies between 1000 and 10000.) Then create similar
conjectures of your own.

3.7 Existence

As we have just seen, to show that an assertion is false one usually hunts for a
counterexample consisting of numbers, a diagram, or some other mathematical
object satisfying certain conditions. Thus to disprove the claim “For all positive
real numbers x and y it is the case that 1

2 (x + y) >
√

xy,” we need only find a
single pair of real numbers x and y for which 1

2 (x + y) ≤ √xy.

a) Find positive real numbers for which 1
2 (x + y) ≤ √xy.

Being naturally curious folk, mathematicians are also prone to search for
objects with certain properties for the sheer pleasure of discovering whether
or not they exist. For example, do there exist integers a, b and c such that
a+b+c = 3 and a3 +b3 +c3 = 3 other than the obvious solution a = b = c = 1?
Or given two rectangles in the plane, does there necessarily exist a line that
simultaneously cuts the areas of both of them in half? The answers to both
these questions turns out to be yes, as you will discover in the exercises.

On the surface a question about existence seems more approachable than a
proof. After all, one need only come up with a single object satisfying certain
properties, as opposed to proving that an assertion is true for all values of the
variables. While it is true that a solution to an existence question has a very
different flavor than the proofs we have seen in previous sections, they are not
necessarily easier to find. For example, Euler made a conjecture centuries ago
that implies that it is not possible for the sum of three perfect fourth powers
to equal another perfect fourth power. It was not until 1986 (well into the
computer age) that Noam Elkies found a counterexample to this claim:

26824404 + 153656394 + 187967604 = 206156734.

The smallest possible counterexample still involves five and six digit numbers.
There are two standard methods for settling an existence question. The

most obvious way is to exhibit a certain number or other mathematical object
and show that it has the desired properties. This was the technique employed

2Our thanks to Tom Kilkelly for sharing this entertaining conjecture.
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by Elkies, although there was certainly a good deal of insight and deeper math-
ematics going on behind the scenes. However, it is also possible to argue that
something exists even though a precise description is never provided.

To provide a constructive solution to an existence problem, carefully
describe the sought after mathematical object and demonstrate that it has
the desired properties. It is also acceptable to give an existence proof
by arguing that an object must exist without ever explicitly describing it.

b) It is undeniably the fact that there exist two individuals in Los
Angeles having the same number of hairs on their head. Which type of proof of
this fact is more appropriate, a constructive solution or an existence proof?

To illustrate both approaches, let us prove that there exists a number with
the property that adding 287 to this number gives a total of 1000. The most
obvious solution would be to point out that 713 has the desired property, since
713 + 287 = 1000. Believe it or not, one can also convincingly argue for the
existence of such a number without actually identifying it! Consider the sums
1 + 287, 2 + 287, 3 + 287, and so on. The results, of course, are 288, 289, 290
and on up. Eventually we must hit 1000, even if it is not clear at precisely what
point we arrive. Hence the number we are seeking does indeed exist.

c) Give both an existence proof and a constructive solution showing
that there exists a real number satisfying 4x + 4x = 14.

Depending on the problem at hand, there are a variety of strategies for
obtaining a constructive solution. When searching for a positive integer with
certain properties it is often possible to perform a computer search which tests
each positive integer in turn for the desired property. This was the approach
taken by the author to find the counterexample n = 26861 mentioned earlier in
this chapter. In geometry problems, a constructive solution generally consists
of a step-by-step sequence of geometric operations that yields the sought after
point, line, or circle. An existence problem involving numbers might have as its
solution an algebraic expression.

To understand what is meant by the latter remark, suppose that we wish
to prove that there exists a rational number between any two other rational
numbers. Letting r < s be the two given fractions, we claim that the number
1
2 (r+s) satisfies the statement of the problem. To begin, this quantity is clearly
also a rational number: if we write r = a/b and s = c/d for integers a, b, c, d then
1
2 (r+s) = (ad+ bc)/2bd, a ratio of integers. And since 1

2 (r+s) is the average of
r and s it lies midway between them. More precisely, we have r < 1

2 (r+s) since
this inequality is equivalent to 1

2r < 1
2s, which reduces to r < s, a given fact.

In the same way we find that 1
2 (r + s) < s as well, establishing that 1

2 (r + s)
does lie between r and s.
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Solutions to harder existence questions might require a bit of ingenuity to
construct. For instance, consider the unexpectedly long list of integers 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, all of which are not prime.
(We have to wait until 524, 525, . . . , 540 to reach a longer string of non-primes.)
It is natural to wonder whether there are arbitrarily long strings of consecutive
composite numbers; say, one thousand composites in a row. The answer is yes,
and the construction of such a sequence is both simple and delightfully clever.
Consider the numbers

1001! + 2, 1001! + 3, 1001! + 4, . . . , 1001! + 1001,

where 1001! = (1001)(1000)(999) · · · (2)(1) as usual. The first number is clearly
even, the second number is divisible by 3, and so on, all the way to the final
number, which is a multiple of 1001. Voilà, one thousand consecutive numbers,
none of which are prime.†

d) Do there exist one thousand consecutive numbers, none of which
are perfect squares?

To illustrate an existence proof in another context, we shall convince our-
selves that given 101 points in the plane, no three of which lie on the same line,
there exists a line through one of the points that neatly divides the remaining
points in half, with fifty points on either side. To
see why this must always be the case, imagine
drawing a line through one of the points (call it P )
on the “edge” of the set, so that all the remaining
points are to one side of the line. Now steadily
rotate the line 180◦ clockwise, keeping track along
the way of how many points the line has crossed.
As the line rotates it must cross the other points
one at a time, since no three points lie on a single
line. Furthermore, after 180◦ the line will have
passed all 100 points. Hence at some point it will
have just passed 50 points; this position of the line solves the problem.

a) Choosing x = y = 5 results in 1
2 (x + y) = 5 =

√
xy. This is the

best we can do; it is not possible to obtain 1
2 (x + y) <

√
xy.

b) An existence proof probably springs to mind first. Since every
human has less than 200,000 hairs on their head and there are well more than this
number of individuals in Los Angeles, it is not possible for everyone to have a different
number of hairs on their head. However, a constructive solution is also feasible; just
find two completely bald men.
c) Clearly the quantity 4x + 4x grows steadily as x increases. At x = 1 we obtain 8,
while x = 2 gives 24, so at some point in between we must have 4x + 4x = 14.
(Technically, we are invoking the Intermediate Value Theorem.) However, it is also
possible to exhibit a solution. Taking x = 1.5 we find that 4(1.5) + 41.5 = 6 + 8 = 14.
d) There are indeed one thousand consecutive nonsquare numbers. For instance, take
the 2000 numbers between 10002 and 10012.
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Exercises
50. Show that there are numbers x and y such that x + y = π and x− y =

√
2.

51. Disprove the claim that for all positive real numbers x and y it is the case
that x + 2y <

√
8xy.

52. Prove that there exist three consecutive integers, one of which is divisible
by 32, one of which is divisible by 52, and one of which is divisible by 72.

53. Demonstrate that there exist three integers a, b and c other than the obvious
choice a = b = c = 1 such that a + b + c = 3 and a3 + b3 + c3 = 3. (Hint: the
solution only involves one-digit numbers, one of which is negative.)

54. Explain why there is a real number x satisfying 8x + 9x = 10. Give both an
existence proof and a constructive solution.

55. Given a circle in the plane, what must be true of a line that cuts the cir-
cle’s area in half? Based on your answer, explain how to construct a line that
simultaneously cuts the area of two different circles each in half.

56. Use the ideas developed in the previous exercise to show that given any two
rectangles in the plane, there exists a line that simultaneously cuts the area of
each rectangle in half. In what situations will such a line not be unique?

Writing
57. Demonstrate that there exist two positive integers which differ by ten whose
sum is one million. Give both an existence proof and a constructive solution.

58. Ten children at a party collect a total of 74 pieces of candy from a piñata.
Prove that there exists some child who received at least eight pieces of candy.

59. Show that there exist 1000 consecutive positive integers, each having two or
more digits, such that the first number is not even, the next is not a multiple
of 3, the third is not a multiple of 4, and so on.

60. Prove that there exists a real number r with 0 < r < 1 having the property
that every possible finite string of digits appears at some place within its decimal
expansion. (For example, the string ‘314159’ should occur if we look far enough
out in the decimal expansion for r.)

61. Given 102 points in the plane, no three of which lie on the same line, prove
that there exists a line passing through two of the points which divides the
remaining points in half, with fifty points on each side of the line.

62. Show that for every n ∈ N, a unique number in the list n + 1, n + 2, . . . , 2n
is a power of 2. (Recall that the powers of 2 are 1, 2, 4, 8, 16, . . . )

63. We are give one-hundred points in the plane so that no three are situated
along the same line. Fifty of the points are colored red, while the remaining
fifty are colored blue. Prove that there exists a line dividing each set of points
in half, with twenty-five red points and twenty-five blue points on either side.



78 CHAPTER 3. PROOF TECHNIQUES

3.8 Reference

We give a summary of the various types of proofs that have been presented,
along with a sample paragraph to illustrate how to phrase such a proof.

∗ Direct Proof This is the most common type of argument. Each step in such an
argument follows directly from previous steps or from the hypotheses until the
desired conclusion is reached. Along the way the proof may appeal to definitions
or other relevant known facts to move from one step to the next.

∗ Proof by Contrapositive This technique is most advantageous when both
the conclusion and hypothesis claim that something does not occur; i.e., are
negative statements. The first task is to carefully state the contrapositive of the
implication P ⇒ Q, which is written as “If not Q then not P .” Then prove the
contrapositive statement instead, using whatever method works best. Note that
it is not valid to write the contrapositive as “not P and not Q.”

Begin the proof by saying “We prove the contrapositive, which states that
[write contrapositive]. This is true because [proof of contrapositive].”

∗ Proof by Contradiction This technique is also effective when attempting to
prove that something does not occur, such as as an implication of the form
P ⇒ Q where Q is a negative statement. The idea is to assume the negative
of the conclusion and then argue to a contradiction. In other words, show that
assuming both P and ¬Q leads to an impossible or absurd situation.

Begin the proof by saying “Suppose to the contrary that [state negative
of conclusion here]. Then [main argument leading to absurd statement],
which is a contradiction. Hence our assumption is false, which means that
[original conclusion] must be true.”

∗ Biconditional Proofs Here one wishes to prove a statement of the form “Under
certain conditions, P ⇐⇒ Q.” This is usually signified by the phrase “P if and
only if Q” or “P is necessary and sufficient for Q.” To prove a biconditional,
show that each statement implies the other, using any helpful proof techniques.
Present these arguments in separate paragraphs.

The first paragraph might begin “We first prove that P ⇒ Q. [Proof of im-
plication]” An abbreviated form looks like “(=⇒) [Proof of implication]”
The second paragraph could read “Conversely, Q ⇒ P because [proof of
implication]” which can be shortened to “(⇐=) [Proof of implication]”

Alternatively, one can prove a biconditional P ⇐⇒Q by showing that P ⇒ Q
and also ¬P ⇒ ¬Q. One would again prove each implication separately.

∗ Characterization To show that a property characterizes a certain class of
objects, show that an object satisfies has the property if and only if it is a
member of the designated class of objects.

One could write “To begin, suppose that [x is an object in the class of
objects]. [Proof that x has the property.] On the other hand, suppose that
[x has the property]. [Proof that x is a member of the class of objects.]
This shows that [property] characterizes [class of objects].”
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∗ Vacuous Proof If while digesting the statement to be proven it comes to light
that the premise is never true, one can employ a vacuous proof. (This typically
only occurs when dealing with empty sets, special cases of general results, or
artificially concocted textbook problems.)

A proof would look like “We will show that the statement is vacuously
true. Observe that [premise] is never true because [include reasons here].
This completes the proof.”

∗ Trivial Proof If while digesting the statement to be proven it comes to light
that the conclusion is always true irregardless of the premise, one can employ a
trivial proof. (In actual practice this sort of proof rarely comes up.)

A proof would look like “We will show that the statement is trivially true.
Observe that [conclusion] is always true because [include reasons here].
This completes the proof.”

∗ Disproving an Assertion A disproof would involve stating and then proving
the negation of the assertion. Mathematical claims usually take the form of a
universally quantified implication; i.e. a statement of the form “For all values
of the variables, P ⇒ Q.” In this situation to supply a disproof it suffices to
find a single counterexample: find an instance in which P is true but Q is false.
This is essentially an instance of an existence argument.

∗ Existence The most common way to demonstrate that a mathematical object
having certain properties does indeed exist is to construct an object and then
show that it satisfies the stated conditions. At times it may also be possible
to convincingly argue for the existence of the object without actually giving an
explicit example of such an object.

Sample Proofs
The following proofs provide concise explanations for results discussed within
this chapter. They are meant to serve as an illustration for how proofs of
similar statements could be phrased. The boldface numbers indicate the section
containing each result; the location of that result within the section is marked
by a dagger (†).

3.4 Prove for any sets A, B and C that if A− C �⊆ A−B then B �⊆ C.

Proof We will prove the contrapositive of the given implication, which states
that if B ⊆ C then A−C ⊆ A−B. To conclude that A−C ⊆ A−B we must
show that if x ∈ A − C then x ∈ A − B. So suppose that x ∈ A − C. This
means that x ∈ A but x �∈ C. However, we are given that B ⊆ C. Because
x �∈ C, we may deduce that x �∈ B either. We now have x ∈ A but x �∈ B, which
means that x ∈ A− B, as desired. Finally, since the contrapositive is logically
equivalent to the original statement, we are done.



80 CHAPTER 3. PROOF TECHNIQUES

3.4 Demonstrate that if α is irrational then 3α is also irrational.

Proof Suppose to the contrary that 3α is rational. This would mean that we
could write 3α = m

n for integers m and n. Dividing by 3 yields α = m
3n . But this

contradicts the fact that we are told that α is irrational, since we could write
α as the ratio m

3n of the integers m and 3n. Since supposing that 3α is rational
leads to a contradiction, we conclude that 3α is irrational, as claimed.

3.5 Prove that for sets A and B we have A ∪B = B if and only if A ⊆ B.

Proof We first explain why A ∪B = B implies A ⊆ B. To deduce that A ⊆ B
we will show that if x ∈ A then x ∈ B. So suppose that x ∈ A. Then clearly
x ∈ A ∪B by definition of union. Since A ∪B = B, it follows that x ∈ B.

We next prove the converse, which states that A ⊆ B implies A ∪ B = B.
To conclude that A ∪ B = B we will argue that if x ∈ A ∪ B then x ∈ B and
vice-versa. So suppose that x ∈ A ∪ B; then either x ∈ A or x ∈ B. In the
former case, we deduce that x ∈ B since A ⊆ B. Hence x ∈ B in either case, as
desired. It remains to show that if x ∈ B then x ∈ A ∪ B, but this is clear by
definition of union. Hence A ∪B = B as claimed, which completes the proof.

3.5 Show that 3n + 4 is a perfect square whenever n2 + 5n + 6 is a prime.

Proof Observe that the expression n2 + 5n + 6 factors as (n + 2)(n + 3). Since
each factor is 3 or more for n ∈ N, their product cannot be a prime. Hence the
premise is always false, meaning that the statement is vacuously true.

3.6 Prove or disprove the claim that for all n ∈ N, if n is prime then 6n + 1 is
also prime.

Disproof We will disprove the statement by showing that its negative is true;
namely, that there exists an n ∈ N such that n is prime but 6n+1 is not prime.
One such value of n is n = 19, since 19 is prime but 6(19)+1 = 115 is not. This
counterexample provides the disproof.

3.7 Demonstrate that there exist one thousand consecutive positive integers,
none of which are prime.

Proof We claim that the numbers

1001! + 2, 1001! + 3, 1001! + 4, . . . , 1001! + 1001

satisfy the statement of the problem. Here 1001! = (1001)(1000)(999) · · · (2)(1)
as usual. Clearly 1001! is a multiple of 2, hence so is 1001! + 2. Since this
number is divisible by 2 it is not prime. In the same manner, for each k in the
range 2 ≤ k ≤ 1001 we find that 1001! is a multiple of k, hence so is 1001! + k,
which means that this number is not prime. In summary, our list contains one
thousand consecutive integers, none of which are prime, so we are done.


