Your name:
Instructor (please circle): Alex Barnett Naomi Tanabe
Math 22 Fall 2016, Homework 8, due Wed Nov 9
Please show your work. No credit is given for solutions without work or justification.
(1) Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 5\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]$ and let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. In this question do not use row reduction.
(a) Use the fact that each vector in the set $\left\{\mathbf{v}_{j}\right\}$ is orthogonal to the other two to write $\mathbf{y}=\left[\begin{array}{c}0 \\ 0 \\ -4 \\ 8\end{array}\right]$ as a linear combination of the three vectors.
(b) Write W^{\perp} as the null space of a certain matrix.
(c) What is $\operatorname{dim} W^{\perp}$? (Explain)
(2) (a) Compute the point in Span $\left\{\left[\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ which has the minimum distance from the point $\left[\begin{array}{l}7 \\ 2 \\ 3\end{array}\right]$.
(b) What is the distance in part (a) ?
(c) Let A be any $n \times n$ matrix whose columns are an orthonormal basis for \mathbb{R}^{n}. Prove the amazing result that its rows must also be an orthonormal basis for \mathbb{R}^{n}. (As always with proofs, if you use previous theorems, explain how.)
(3) Consider the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(a) Use the Gram-Schmidt process to compute an orthogonal basis for $\operatorname{Col} A$.
(b) Use the above to compute the factors Q and R in the $Q R$ factorization of A.

