Your name:

Instructor (please circle):

Alex Barnett

Naomi Tanabe

Math 22 Fall 2016, Homework 6, due Wed Oct 26

Please show your work. No credit is given for solutions without work or justification.

(1) (a) Let
$$A = \begin{bmatrix} 0 & 1 & -2 \\ 0 & -2 & 4 \\ 1 & -1 & 6 \\ 1 & 0 & 4 \end{bmatrix}$$
. Find a basis for Row A:

(b) For the previous A, find a nontrivial vector that is guaranteed to have a zero dot product with every vector in Row A. In what fundamental subspace for the matrix A does such a vector live?

- (c) What are the possible ranks of some 5×3 matrix *B* if there exists two nontrivial solutions to $B\mathbf{x} = \mathbf{0}$, neither of which is a multiple of the other?
- (d) For a general matrix A, is the set Col A affected by row reductions?

BONUS. Is the dimension of Col A affected by row reductions?

(2) (a) For what h does the matrix $\begin{bmatrix} 11 & 1 \\ h & 3 \end{bmatrix}$ have an eigenvalue of (algebraic) multiplicity two? Show your work, as usual.

(b) For this h in the above matrix, what is the dimension of the eigenspace?

- (c) For this h in the matrix from (a), explain why there can be no other eigenvalues.
- (d) The vector $\mathbf{v} = (0, 0, 1)$ is an eigenvector of $\begin{bmatrix} -1 & -4 & 0 \\ 2 & 5 & 0 \\ 4 & 4 & 3 \end{bmatrix}$. Find another vector that together with \mathbf{v} forms a basis for the eigenspace in which \mathbf{v} lives:

(3) Find all eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ -5 & 3 & -3 \\ -4 & 0 & 0 \end{bmatrix}$. For each eigenvalue state its

(algebraic) multiplicity, give a basis for its eigenspace and state the dimension of the eigenspace. [Hint: by noticing something you already know about the matrix, you can know one eigenvalue immediately. This helps you check your work.]