Workshop III

2006-10-19

1. Let V be a vector space and $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ a basis for V. Show that a subset $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in V is linearly independent if and only if the set of coordinate vectors $\left\{\left[\mathbf{u}_{1}\right]_{\mathcal{B}}, \ldots,\left[\mathbf{u}_{p}\right]_{\mathcal{B}}\right\}$ is linearly independent in \mathbb{R}^{n}.
2. Let V and W be vector spaces, $T: V \rightarrow W$ a linear transformation, and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ a subset of V.
(a) Show that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent in V, then the set of images $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ is linearly dependent in W.
(b) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent, must $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ be linearly independent?
