Workshop III 2006-10-19

- 1. Let V be a vector space and $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ a basis for V. Show that a subset ${\mathbf{u}_1, \ldots, \mathbf{u}_p}$ in V is linearly independent if and only if the set of coordinate vectors ${[\mathbf{u}_1]_{\mathcal{B}}, \ldots, [\mathbf{u}_p]_{\mathcal{B}}}$ is linearly independent in \mathbb{R}^n .
- 2. Let V and W be vector spaces, $T: V \to W$ a linear transformation, and $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ a subset of V.
 - (a) Show that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly dependent in V, then the set of images $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ is linearly dependent in W.
 - (b) If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent, must $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ be linearly independent?