Workshop II

2006-09-28

1. A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ in \mathbb{R}^{n} is linearly independent if whenever $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=$ $\mathbf{0}$ for $c_{1}, c_{2}, c_{3} \in \mathbb{R}, c_{1}=c_{2}=c_{3}=0$; otherwise, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent. Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent with $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{n}$, and let

$$
\mathbf{v}=d_{1} \mathbf{v}_{1}+d_{2} \mathbf{v}_{2}+d_{3} \mathbf{v}_{3}
$$

with $d_{1}, d_{2}, d_{3} \in \mathbb{R}$. Prove that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}\right\}$ is linearly dependent.
2. Let A be an $m \times n$ matrix, and let $\mathbf{b}, \mathbf{b}^{\prime} \in \mathbb{R}^{m}$ and $c \in \mathbb{R}$.
(a) Prove that if the equations $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{b}^{\prime}$ are both consistent, then the equation $A \mathbf{x}=\mathbf{b}+\mathbf{b}^{\prime}$ is consistent.
(b) Prove that if the equation $A \mathbf{x}=\mathbf{b}$ is consistent, then the equation $A \mathbf{x}=c \mathbf{b}$ is consistent.
3. Let A be an $m \times n$ matrix, and let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.
(a) Prove that if \mathbf{u} and \mathbf{v} are solutions to the equation $A \mathbf{x}=\mathbf{0}$, then so is $\mathbf{u}+\mathbf{v}$.
(b) Prove that if \mathbf{u} is a solution to the equation $A \mathbf{x}=\mathbf{0}$, then so is $c \mathbf{u}$.
(c) Is it true that \mathbf{u} and \mathbf{v} are solutions to the equation $A \mathbf{x}=\mathbf{0}$ if and only if $\mathbf{u}+\mathbf{v}$ is?
(d) If $c \neq 0$, is it true that \mathbf{u} is a solution to the equation $A \mathbf{x}=\mathbf{0}$ if and only if $c \mathbf{u}$ is?
4. Let A be an $m \times n$ matrix. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ are all solutions to the equation $A \mathbf{x}=\mathbf{0}$ and $\mathbf{v} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$. Show that \mathbf{v} is a solution to the equation $A \mathbf{x}=\mathbf{0}$.
5. For each of the following statements, decide whether it is true or false. If it is true, prove it; if it is false, give a counterexample.
(a) If the vectors \mathbf{u} and \mathbf{v} are solutions to the equation $A \mathbf{x}=\mathbf{b}$, then so is $\mathbf{u}+\mathbf{v}$.
(b) Let A and B be 2×2 matrices, and let $\mathbf{u} \in \mathbb{R}^{2}$. Then $A(B \mathbf{u})=B(A \mathbf{u})$.
6. Prove that if n is an integer such that n^{2} is even, then n is even.

