Workshop II 2006-09-28

1. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ in \mathbb{R}^n is *linearly independent* if whenever $c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3 =$ **0** for $c_1, c_2, c_3 \in \mathbb{R}$, $c_1 = c_2 = c_3 = 0$; otherwise, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is *linearly dependent*. Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent with $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^n$, and let

$$\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + d_3 \mathbf{v}_3$$

with $d_1, d_2, d_3 \in \mathbb{R}$. Prove that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}\}$ is linearly dependent.

- 2. Let A be an $m \times n$ matrix, and let $\mathbf{b}, \mathbf{b}' \in \mathbb{R}^m$ and $c \in \mathbb{R}$.
 - (a) Prove that if the equations $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}'$ are both consistent, then the equation $A\mathbf{x} = \mathbf{b} + \mathbf{b}'$ is consistent.
 - (b) Prove that if the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then the equation $A\mathbf{x} = c\mathbf{b}$ is consistent.
- 3. Let A be an $m \times n$ matrix, and let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
 - (a) Prove that if **u** and **v** are solutions to the equation $A\mathbf{x} = \mathbf{0}$, then so is $\mathbf{u} + \mathbf{v}$.
 - (b) Prove that if **u** is a solution to the equation $A\mathbf{x} = \mathbf{0}$, then so is $c\mathbf{u}$.
 - (c) Is it true that \mathbf{u} and \mathbf{v} are solutions to the equation $A\mathbf{x} = \mathbf{0}$ if and only if $\mathbf{u} + \mathbf{v}$ is?
 - (d) If $c \neq 0$, is it true that **u** is a solution to the equation $A\mathbf{x} = \mathbf{0}$ if and only if $c\mathbf{u}$ is?
- 4. Let A be an $m \times n$ matrix. Suppose $\mathbf{u}_1, \ldots, \mathbf{u}_p$ are all solutions to the equation $A\mathbf{x} = \mathbf{0}$ and $\mathbf{v} \in \text{Span}\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$. Show that \mathbf{v} is a solution to the equation $A\mathbf{x} = \mathbf{0}$.
- 5. For each of the following statements, decide whether it is true or false. If it is true, prove it; if it is false, give a counterexample.
 - (a) If the vectors \mathbf{u} and \mathbf{v} are solutions to the equation $A\mathbf{x} = \mathbf{b}$, then so is $\mathbf{u} + \mathbf{v}$.
 - (b) Let A and B be 2×2 matrices, and let $\mathbf{u} \in \mathbb{R}^2$. Then $A(B\mathbf{u}) = B(A\mathbf{u})$.
- 6. Prove that if n is an integer such that n^2 is even, then n is even.