Ten Axioms of Vector Spaces

Let V be a vector space. Then for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalars c and d the following holds true:

1. $\mathbf{u}+\mathbf{v} \in V$;
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$;
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$;
4. There is a zero vector $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$;
5. For each $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$;
6. $c u \in V$;
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$;
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$;
9. $c(d \mathbf{u})=(c d) \mathbf{u}$;
10. $1 \mathbf{u}=\mathbf{u}$.
