Math 22 Fall 2004 Linear Algebra with Applications

Vector and Matrix Equations September 29, 2004

Load the package for doing Linear Algebra

> with(Student[LinearAlgebra]):

Warning, the protected name . has been redefined and unprotected

Example 1: Solve a vector equation

$$x1*a1 + x2*a2 = b$$

$$\begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$$

Define an (augmented) matrix of the equation

$$A := \begin{bmatrix} -1 & 3 & 5 \\ 3 & 2 & -4 \\ -2 & -3 & 1 \end{bmatrix}$$

Reduce it to an echelon form

```
> A := AddRow(A, 2, 1, 3):
```

$$A := AddRow(A, 3, 1, -2);$$

$$A := \begin{bmatrix} -1 & 3 & 5 \\ 0 & 11 & 11 \\ 0 & -9 & -9 \end{bmatrix}$$

$$A := AddRow(A, 3, 2, 9);$$

$$A := \begin{bmatrix} -1 & 3 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

... and to the reduced echelon form

$$> A := AddRow(A, 1, 2, -3);$$

$$A := \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solve the system now

$$x := \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Test our solution

$$> x[1] * a1 + x[2] * a2 = b;$$

$$\begin{bmatrix} 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \\ 1 \end{bmatrix}$$

Example 2: Solve a matrix equation Ax = b

```
> A := <<1, 3, -2> | <2, -1, 3> | <-2, -3, 1>>:
    b := Vector(3, symbol = v):
    M := <A | b>:
    A, b, M;
\begin{bmatrix}
1 & 2 & -2 \\
3 & -1 & -3 \\
-2 & 3 & 1
\end{bmatrix}, \begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}, \begin{bmatrix}
1 & 2 & -2 & v_1 \\
3 & -1 & -3 & v_2 \\
-2 & 3 & 1
\end{bmatrix}
```

Solve this system

> M := AddRow(M, 2, 1, -3):
M := AddRow(M, 3, 1, 2);

$$M := \begin{bmatrix} 1 & 2 & -2 & v_1 \\ 0 & -7 & 3 & v_2 - 3 v_1 \\ 0 & 7 & -3 & v_3 + 2 v_1 \end{bmatrix}$$

> M := AddRow(M, 3, 2, 1);

$$M := \begin{bmatrix} 1 & 2 & -2 & v_1 \\ 0 & -7 & 3 & v_2 - 3 v_1 \\ 0 & 0 & 0 & v_3 - v_1 + v_2 \end{bmatrix}$$

Conclusion: this system is <u>not</u> consistent for every **b**It is easy to find v1, v2, v3 such that v3-v1+v2 is nonzero