The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.
a. A is an invertible matrix
b. A is row equivalent to the $n \times n$ identity matrix
c. A has n pivot positions
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
e. The columns of A form a linearly independent set
f. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one
\mathbf{g}. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$
h. The columns of A span \mathbb{R}^{n}
i. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}
j. There is an $n \times n$ matrix C such that $C A=I$
k. There is an $n \times n$ matrix D such that $A D=I$

1. A^{T} is an invertible matrix
\mathbf{m}. The columns of A form a basis of \mathbb{R}^{n}
n. $\operatorname{Col} A=\mathbb{R}^{n}$
o. $\operatorname{dim} \operatorname{Col} A=n$
p. $\operatorname{rank} A=n$
q. $\operatorname{Nul} A=\{\mathbf{0}\}$
r. $\operatorname{dim} \operatorname{Nul} A=0$
s. The number 0 is not an eigenvalue of A
t. $\operatorname{det} A \neq 0$
