The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- **a.** A is an invertible matrix
- **b.** A is row equivalent to the $n \times n$ identity matrix
- **c.** A has n pivot positions
- **d.** The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- **e.** The columns of A form a linearly independent set
- **f.** The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is **<u>one-to-one</u>**
- **g.** The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$
- **h.** The columns of A span \mathbb{R}^n
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n <u>onto</u> \mathbb{R}^n
- **j.** There is an $n \times n$ matrix C such that CA = I
- **k.** There is an $n \times n$ matrix D such that AD = I
- **l.** A^T is an invertible matrix