The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- **a.** A is an invertible matrix
- **b.** A is row equivalent to the $n \times n$ identity matrix
- c. A has n pivot positions
- **e.** The columns of A form a linearly independent set
- **h.** The columns of A span \mathbb{R}^n
- **m.** The columns of A form a basis of \mathbb{R}^n
- **n.** $\operatorname{Col} A = \mathbb{R}^n$
- **o.** dim $\operatorname{Col} A = n$
- **p.** rank A = n
- **q.** Nul $A = \{0\}$
- **r.** dim Nul A = 0
- **s.** The number 0 is **not** an eigenvalue of A
- **t.** det $A \neq 0$