THINGS TO KNOW ABOUT THE INNER PRODUCT ## Axioms of the inner product - 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$; - 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$; - 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle;$ - 4. $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$. ## **Definitions** - 1. Length: $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. 2. Distance: $dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$. - 2. **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. ## Properties of the length - 1. $||c\mathbf{v}|| = |c| ||\mathbf{v}||$. - 2. Pythagoras Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal iff $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2.$ - 3. Cauchy-Schwarz Inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$. - 4. Triangle Inequality: $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$.