1. Suppose X is a random variable with mean and variance both 20 . What can be said about $P(0<X<40)$?
2. From past experience a professor knows that the test score of a student taking a final exam is a random variable with mean 75 .
(a) Give an upper bound for the probability that a student's test score will exceed 85. Suppose the professor also knows that the variance of a student's test score is equal to 25 .
(b) What can be said about the probability that a student will score between 65 and 85.
(c) How many students would have to take the exam to ensure with probability at least 0.9 , that the class average would be within 5 of 75 .
3. If you flip 10^{4} coins, how surprised would you be if the observed percentage of heads differs from the expected value of 50% by more than 1%. This is a Binomial distribution but sample size n is large enough that you can use they are normal distributed.

This is problem 5.3 of David Morin
You will need the values in a normal distribution table.

