Here are some questions about independence.

1. Toss two 6-sided dice. Let X_1 be the value of the first and X_2 be the value of the second. Are the events A and B independent for:

(a)
$$A = \{X_1 = 4\} \text{ and } B = \{X_2 = 3\}$$

 $P(A) = 1/6$ $P(A \cap B) = \frac{1}{36}$ yes!
 $P(B) = 1/6$

(b)
$$A = \{X_1 = 4\} \text{ and } B = \{X_1 + X_2 = 6\}$$

$$P(A) = \frac{1}{6}$$

$$P(B) = \frac{5}{36}$$

$$P(A) = \frac{1}{36}$$

$$P(B) = \frac{5}{36}$$

(c)
$$A = \{X_1 = 4\}$$
 and $B = \{X_1 + X_2 = 7\}$

$$P(A) = 1/6 \qquad P(A \cap B) = 1/36 \qquad \text{Yes}.$$

2. A family has k kids. Let Y_1 be the number of girls and Y_2 be the number of genders represented (we assume a gender binary, sorry). Let $A = \{Y_1 \ge m\}$ and $B = \{Y_2 = 2\}$. Are A and B independent when:

(a)
$$k = \frac{9}{3}$$
 and $m = 1$

$$P(A) = \frac{1}{8}$$

$$P(B) = \frac{6}{8}$$

$$P(B) = \frac{6}{8}$$

(b)
$$k = 4$$
 and $m = 2$

$$P(B) = \frac{6}{8}$$

$$P(A) = \frac{11}{16} + (\frac{4}{2}) + (\frac{4}{3}) + (\frac{4}{4})$$

$$P(B) = \frac{14}{16} + (\frac{4}{3}) + (\frac{4}{3}) + (\frac{4}{4})$$

$$P(B) = \frac{14}{16} + \frac{10}{16} + \frac{$$

(c)
$$k = 2$$
 and $m = 3$

(need more girls than kids)

4