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Central Limit Theorem

• Consider a Bernoulli trials process with probability p for success, i.e., a series
{Xi} of i.i.d. Bernoulli trials.

• Xi = 1 or 0 if the ith outcome is a success or a failure, and let
Sn = X1 + X2 + · · ·+ Xn.

• Then Sn is the number of successes in n trials.
• We know that it is distributed as a binomial distribution with parameters n
and p.

P(Sn = j) =
(
n
j

)
pj(1− p)n−j
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Standardized Sums

• We can prevent the drifting of these spike graphs by subtracting the
expected number of successes np from Sn.

• We obtain the new random variable Sn − np.
• Now the maximum values of the distributions will always be near 0.
• To prevent the spreading of these spike graphs, we can normalize Sn − np to
have variance 1 by dividing by its standard deviation √npq. Note: it does not
spread as n→ +∞
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Standardized Sum: Definition

The Standardized sum of Sn is given by

S∗n =
Sn − np
√npq .

Note: S∗n always has expected value 0 and variance 1.
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Standardized Sums

S∗n =
Sn − np
√npq .

• We plot a spike graph with spikes placed at the possible values
S∗n : x0, x1, . . . , xn, where

xj =
j− np
√npq

• We make the height of the spikes at xj equal to the distribution value(
n
j

)
pj(1− p)n−j
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Standardized Sum n = 270, p = 0.3 VS standard normal density

-4 -2 0 2 4
0
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Can we make them match?
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Can we make them match?

ϕ(x) = 1√
2π
e−x2/2 gn(x) = P

(
S∗n =

j− np
√npq

)
where j = round(np+ x

√
npq)

In other words, xj = j−np√npq is the closest point of that shape close to x.

∫
R
ϕ(x) dx = 1 =

n∑
j=0

(
n
j

)
pjqn−j =

n∑
j=0

P
(
S∗n =

j− np
√npq

)

=
n∑
j=0

gn
(
j− np
√npq

)
̸=
∫
R
gn(x) dx

The last line is not an approximation for the integral! Why?
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Standardized Sum n = 100, p = 0.3 VS standard normal density
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Integrating gn(x)

∫
R
gn(x) dx =

n∑
j=0

1
√npqgn

(
j− np
√npq

)

=
n∑
j=0

1
√npq

(
n
j

)
pjqn−j

=
1

√npq

n∑
j=0

(
n
j

)
pjqn−j

=
1

√npq
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rescaled standardized Sum n = 100, p = 0.3 VS standard normal density
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Central Limit Theorem for Binomial Distributions

Theorem
Write b(n,p, j) :=

(n
j
)
pjqn−j. We have

lim
n→+∞

√
npqb(n,p, round(np+ x

√
npq)) = ϕ(x) = 1√

2π
e−x2/2

We can prove it directly using Stirling’s formula n! ≈
√
2πnnne−n as n→ +∞.

Challenge: try to carry this out for x = 0 and assuming that np is an integer.
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Approximating Binomial Distributions

• To find approximations for the values of b(n,p, j), we set

j = np+ x
√
npq

• Solve for x
x = j− np

√npq .

b(n,p, j) ≈ ϕ(x)
√npq

=
1

√npqϕ
(
j− np
√npq

)
.
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Example

b(n,p, j) ≈ 1
√npqϕ

(
j− np
√npq

)

• Let us estimate the probability of exactly 55 heads in 100 tosses of a coin.

• For this case np = 100 · 12 = 50 and √npq =
√
100 · 12 ·

1
2 =

√
25 = 5.

• Thus x = 55−50
5 = 1 and

P(S100 = 55) ≈ ϕ(1)
5

=
1
5

1√
2π
e−1/2

= 0.0483941

• Indeed, P(S100 = 55) = 0.0484743
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Poisson vs Central Limit Theorem

• We derived the Poisson distribution as an approximation to the binomial.
It has its own merits and we could have derived independently of the
binomial distribution.

• To use it as approximation of the binomial distribution we rely on the limit:

(1− λ/n)n−k → e−λ

Thus, for it to be a good approximation we better have p = λ
n close to 0.

correct CLT Poisson
k = 55 0.0484743 0.0483941 0.042164
k = 50 0.0795892 0.0797885 0.056325

• Central Limit Theorem works for any p.
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Central Limit Theorem for Bernoulli Trials

Theorem
Let Sn be the number of successes in n independent Bernoulli trials with
probability p for success, and let a and b be two fixed real numbers, with a < b.
Then

lim
n→∞

P
(
a ≤ Sn − np

√npq ≤ b
)

=

∫ b

a
ϕ(x)dx .
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Approximation of Binomial Probabilities

Suppose that Sn is binomially distributed with parameters n and p. We know how
to estimate a probability of the form

P(i ≤ Sn ≤ j) ≈
j∑

k=i

1
√npqϕ

(
k− np
√npq

)
.

A slightly more accurate approximation is given by the area under the standard
normal density between the standardized values corresponding to (i− 1/2) and
(j+ 1/2). Thus,

P(i ≤ Sn ≤ j) ≈ P
(
i− 1

2 − np
√npq ≤ N(0, 1) ≤

j+ 1
2 − np

√npq

)
.

But remember, at the end of the day, these are all approximations!
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Example

A coin is tossed 100 times. Estimate the probability that the number of heads lies
between 40 and 60.

The expected number of heads is 100 · 1/2 = 50, and the standard deviation for
the number of heads is

√
100 · 1/2 · 1/2 = 5.

P(40 ≤ Sn ≤ 60) = P(39.5 ≤ Sn ≤ 60.5) (= 0.9648)

= P
(
39.5− 50

5 ≤ S∗n ≤ 60.5− 50
5

)
= P(−2.1 ≤ S∗n ≤ 2.1)

≈
∫ 2.1

−2.1
ϕ(x) dx = 2

∫ 2.1

0
ϕ(x) dx

≈ 0.964271

Note
∫ 2
−2 ϕ(x) dx = 0.9545
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Example

Dartmouth College would like to have 1050 freshmen. This college cannot
accommodate more than 1060. Assume that each applicant accepts with
probability .6 and that the acceptances can be modeled by Bernoulli trials. If the
college accepts 1700, what is the probability that it will have too many
acceptances?

If it accepts 1700 students, the expected number of students who matriculate is
.6 · 1700 = 1020. The standard deviation for the number that accept is√
1700 · .6 · .4 ≈ 20. Thus we want to estimate the probability

P(S1700 > 1060) = P(S1700 ≥ 1061)

= P
(
S∗1700 ≥

1060.5− 1020
20

)
= P(S∗1700 ≥ 2.025) .
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Exercise

A true-false examination has 48 questions. June has probability 3/4 of answering
a question correctly. April just guesses on each question. A passing score is 30 or
more correct answers. Compare the probability that June passes the exam with
the probability that April passes it.

P(april passes) can be approximated in many
ways.
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Central Limit Theorem

Theorem
Let X1, X2, . . . , Xn be a sequence of independent and identically distributed
random variables with expected value µ and finite variance given by σ2.

Write Sn = X1 + X2 + · · ·+ Xn.

Then for any a < b two fixed real numbers, we have

lim
n→∞

P
(
a ≤ Sn − nµ√

nσ
≤ b

)
=

∫ b

a
ϕ(x)dx .

Under some mild assumptions, the result above also holds without requiring the
distributions to identically distributed.
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A More General Central Limit Theorem

Theorem
Let X1, X2, . . . , Xn be a sequence of independent discrete random variables with
finite expected value and variance and let Sn = X1 + X2 + · · ·+ Xn. Assume that
there exists a constant A such that |Xi| ≤ A and that V[Sn] → +∞.

Then for any a < b two fixed real numbers, we have

lim
n→∞

P
(
a ≤ Sn − E[Sn]√

V[Sn]
≤ b

)
=

∫ b

a
ϕ(x)dx .
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Exercise

A die is rolled 420 times. What is the probability that the sum of the rolls lies
between 1400 and 1550?

The sum is a random variable

S420 = X1 + X2 + · · ·+ X420

We have seen that µ = E[Xi] = 7/2 and σ2 = V[Xi] = 35/12.

Thus, E(S420) = 420 · 7/2 = 1470, V[S420] = 420 · 35/12 = 1225, and σ(S420) = 35.

P(1400 ≤ S420 ≤ 1550) ≈ P
(
1399.5− 1470

35 ≤ S∗420 ≤
1550.5− 1470

35

)
= P(−2.01 ≤ S∗420 ≤ 2.30)

≈
∫ 2.30

−2.01
ϕ(x) dx ≈ .9670 .
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We have seen that µ = E[Xi] = 7/2 and σ2 = V[Xi] = 35/12.

Thus, E(S420) = 420 · 7/2 = 1470, V[S420] = 420 · 35/12 = 1225, and σ(S420) = 35.

P(1400 ≤ S420 ≤ 1550) ≈ P
(
1399.5− 1470

35 ≤ S∗420 ≤
1550.5− 1470

35

)
= P(−2.01 ≤ S∗420 ≤ 2.30)

≈
∫ 2.30

−2.01
ϕ(x) dx ≈ .9670 .
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Application to Statistics

• Suppose that a poll has been taken to estimate the proportion of people in a
certain population who favor one candidate over another in a race with two
candidates.

• We pick a subset of the population, called a sample, and ask everyone in the
sample for their preference.

• Let p be the actual proportion of people in the population who are in factor
of candidate A and let q = 1− p.

• If we choose a sample of size n from the population, the preferences of the
people in the sample can be represented by random variables X1, X2, . . . , Xn,
where Xi = 1 if person i is in favor of candidate A, and Xi = 0 if person i is in
favor of candidate B.
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Application to Statistics

• Let Sn = X1 + X2 + · · ·+ Xn.
• If each subset of size n is chose with the same probability, then Sn is
hypergeometric distribution.

• If n is small relative to the size of the population, then Sn is approximately
binomially distributed, with parameters n and p.

• The pollster wants to estimate the value p. An estimate for p is provided by
the value p = Sn/n.

• What is the mean of p? and its variance?
• The standardized version of p is

p∗ = p− p√
pq/n
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Application to Statistics

• The distribution of the standardized version of p is approximated by the
standard normal density.

• Therefore

P
(
p− 2

√
pq
n < p̄ < p+ 2

√
pq
n

)
≈ 0.954

• The pollster does not know p or q, but he can use p and q = 1− p in their
places without too much danger. (Why?)

P
(
p̄− 2

√
p̄q̄
n < p < p̄+ 2

√
p̄q̄
n

)
≈ 0.954 .
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Application to Statistics

• The resulting interval (
p̄− 2

√
p̄q̄√
n

, p̄+
2
√
p̄q̄√
n

)
is called the 95 percent confidence interval for the unknown value of p.

• 19 times out of 20, that interval will contain the true value of p.
• The pollster has control over the value of n. Thus, if he wants to create a 95%
confidence interval with length 6%, then he should choose a value of n so
that

2
√
p̄q̄√
n

≤ .03 .

• We can make this independent of p
2
√
p̄q̄√
n

≤ 1√
n
≤ .03⇒ n ≥ 1111
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Exercise

A restaurant feeds 400 customers per day. On the average 20 percent of the
customers order apple pie.

1. Give a range (called a 95 percent confidence interval) for the number of
pieces of apple pie ordered on a given day such that you can be 95 percent
sure that the actual number will fall in this range.

2. How many customers must the restaurant have, on the average, to be at
least 95 percent sure that the number of customers ordering pie on that day
falls in the 19 to 21 percent range?
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Exercise

A bank accepts rolls of pennies and gives 50 cents credit to a customer without
counting the contents. Assume that a roll contains 49 pennies 30 percent of the
time, 50 pennies 60 percent of the time, and 51 pennies 10 percent of the time.

(a) Find the expected value and the variance for the amount that the bank loses
on a typical roll.

(b) Estimate the probability that the bank will lose more than 25 cents in 100 rolls.
(c) Estimate the probability that the bank will lose exactly 25 cents in 100 rolls.
(d) Estimate the probability that the bank will lose any money in 100 rolls.
(e) How many rolls does the bank need to collect to have a 99 percent chance of

a net loss?

(a) EV is .2 cents and the variance is .36. ; (b) .2024 ; (c) .047 ; (d) .9994 ; (e) 54
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