Math 20, Fall 2017

Edgar Costa
Week 6
Dartmouth College

Exponential distribution

- $T=\operatorname{Exp}(\lambda)$ (λ is any positive constant, depending on the experiment.)
- How long until something happens? (that occurs continuously and independently at a constant average rate)
For example: time between occurrences of a Poisson processes (work it out!)
- $\Omega_{T}=[0,+\infty]$
- $f_{T}(t)= \begin{cases}\lambda e^{-\lambda t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}$
- $P(T \leq t)=1-e^{-\lambda t}$ if $t \geq 0$.
- $P(T>t+s \mid T \geq s)=P(T>t)$ (memoryless!)
- $E[T]=\frac{1}{\lambda}, \quad V[T]=\frac{1}{\lambda^{2}}$

Normal distribution

- The normal density function of the normal distribution $N(\mu, \sigma)$ with parameters μ and σ is defined as follows:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- The parameter μ represents the "center" of the density.
- The parameter σ is a measure of "spread" of the density, and thus it is assumed to be positive.

Normal distribution: In a picture

Normal distribution

- We focus mostly on $\mu=0$ and $\sigma=1$
- We will call this particular normal density function the standard normal density, and we will denote it by $\phi(x)$:

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- There is no nice formula for $\int_{a}^{b} \phi(x) \mathrm{d} x$
- We instead use numerical tables for $\int_{0}^{d} \phi(x) d x$
- Note that

$$
\frac{N(\mu, \sigma)-\mu}{\sigma} \sim N(0,1)
$$

Exercise

On a test that determines whether an applicant receives a scholarship, the scores are distributed by a normal random variable with $\mu=500, \sigma=100$. It the top 5% of scores qualify for a scholarship, how high a score do you need to get it? We seek a such that $P(X \geq a)=0.05$. Then $P(X<a)=0.95$.

For $Z=N(0,1)$, we have $P(Z \leq 1.65) \approx 0.95$
So $\frac{a-\mu}{\sigma}=1.65 \rightsquigarrow a=665$

Exercise

Suppose that the height, in inches, of a 25-year old man is a normal random variable with parameters $\mu=71$ and $\sigma^{2}=6.25$. What percentage of 25 -year old men are over 6 feet 2 inches tall? What percentage of men over 6 feet tall are over 6 foot 5 inches?

Probability

- First, we defined probability in a intuitive way, as the frequency with which that outcome occurs in the long run.
- Later on, we defined probability mathematically as a value of a distribution function for the random variable representing the experiment.
- Now, with the law of large numbers, we will see that these two models are consistent.

Chebyshev's Inequality

Theorem

Let X be discrete random variable with expected value $\mu=E[X]$, and let $\epsilon>0$ be any positive real number. Then

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V[X]}{\epsilon^{2}}
$$

Proof:

$$
\begin{aligned}
& P(|X-\mu| \geq \epsilon)=\sum_{|x-\mu| \geq \epsilon} m_{x}(x) \\
& \quad \epsilon^{2} P(|X-\mu| \geq \epsilon)=\sum_{|x-\mu| \geq \epsilon} \epsilon^{2} m_{x}(x) \leq \sum_{|x-\mu| \geq \epsilon}(x-\mu)^{2} m_{x}(x) \leq \sum_{x \in \Omega}(x-\mu)^{2} m_{x}(x)
\end{aligned}
$$

Example

- Let X by any random variable with $E[X]=\mu$ and $V[X]=\sigma^{2}$
- If $\epsilon=k \sigma$, the Chebyshev Inequality states

$$
P(|X-\mu| \geq k \sigma) \leq \frac{\sigma^{2}}{(k \sigma)^{2}}=\frac{1}{k^{2}}
$$

- Thus, for any random variable, the probability of a deviation from the mean of more than k standard deviations is $\leq \frac{1}{k^{2}}$. .

Can we do better?

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V[X]}{\epsilon^{2}}
$$

- Can we replace \leq by strict inequality $<$?
- For a given ϵ is there a random variable X such that

$$
P(|X-\mu| \geq \epsilon)=\frac{V[X]}{\epsilon^{2}} ?
$$

Chebyshev's Inequality

Theorem

Let X be discrete or continuous random variable with expected value $\mu=E[X]$, and let $\epsilon>0$ be any positive real number. Then

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V[X]}{\epsilon^{2}}
$$

Proof: For the continuous case replace in the appropriate manner \sum by \int.

Exercises

$$
P(|X-\mu| \geq \epsilon) \leq \frac{V[X]}{\epsilon^{2}}
$$

- Let X be a random variable with $E[X]=0$ and $V[X]=1$. What integer value k will assure us that $P(|X| \geq k) \leq .01$?

Law of large numbers

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be an independent trials process, with finite expected value $\mu=E\left[X_{j}\right]$ and finite variance $\sigma^{2}=V\left[X_{j}\right]$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then for any $\epsilon>0$,

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right| \geq \epsilon\right) \rightarrow 0
$$

as $n \rightarrow+\infty$. Equivalently,

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right|<\epsilon\right) \rightarrow 1
$$

as $n \rightarrow+\infty$.

Prove it!

Binomial

Exercise

What do Chebyshev's Inequality and the Law of Large Numbers say about the probability of getting at least 75 heads when flipping a fair coin 100 times? Hint: the binomial distribution is symmetric.

