# Math 20, Fall 2017

Edgar Costa

Week 6

Dartmouth College

## Exponential distribution

- $T = \text{Exp}(\lambda)$  ( $\lambda$  is any positive constant, depending on the experiment.)
- How long until something happens? (that occurs continuously and independently at a constant average rate)
  For example: time between occurrences of a Poisson processes (work it out!)
- $\cdot \ \Omega_T = [0, +\infty]$   $\cdot \ f_T(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}$
- $P(T \leq t) = 1 e^{-\lambda t}$  if  $t \geq 0$ .
- $P(T > t + s | T \ge s) = P(T > t)$  (memoryless!)
- $E[T] = \frac{1}{\lambda}$ ,  $V[T] = \frac{1}{\lambda^2}$

• The normal density function of the normal distribution  $N(\mu, \sigma)$  with parameters  $\mu$  and  $\sigma$  is defined as follows:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

- The parameter  $\mu$  represents the "center" of the density.
- The parameter  $\sigma$  is a measure of "spread" of the density, and thus it is assumed to be positive.

### Normal distribution: In a picture



- $\cdot\,$  We focus mostly on  $\mu=$  0 and  $\sigma=$  1
- We will call this particular normal density function the *standard normal density*, and we will denote it by  $\phi(x)$ :

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\mathbf{x}^2/2}$$

- There is no nice formula for  $\int_a^b \phi(x) dx$
- We instead use numerical tables for  $\int_0^d \phi(x) \, \mathrm{d}x$
- $\cdot$  Note that

$$\frac{N(\mu,\sigma)-\mu}{\sigma} \sim N(0,1)$$

On a test that determines whether an applicant receives a scholarship, the scores are distributed by a normal random variable with  $\mu$  = 500,  $\sigma$  = 100. It the top 5% of scores qualify for a scholarship, how high a score do you need to get it?

We seek a such that  $P(X \ge a) = 0.05$ . Then P(X < a) = 0.95.

For Z = N(0, 1), we have  $P(Z \le 1.65) \approx 0.95$ 

So  $\frac{a-\mu}{\sigma} = 1.65 \rightsquigarrow a = 665$ 

Suppose that the height, in inches, of a 25-year old man is a normal random variable with parameters  $\mu = 71$  and  $\sigma^2 = 6.25$ . What percentage of 25-year old men are over 6 feet 2 inches tall? What percentage of men over 6 feet tall are over 6 foot 5 inches?

- First, we defined probability in a intuitive way, as the frequency with which that outcome occurs in the long run.
- Later on, we defined probability mathematically as a value of a distribution function for the random variable representing the experiment.
- Now, with the law of large numbers, we will see that these two models are consistent.

#### Theorem

Let X be discrete random variable with expected value  $\mu = E[X]$ , and let  $\epsilon > 0$  be any positive real number. Then

$$P(|X - \mu| \ge \epsilon) \le \frac{V[X]}{\epsilon^2}$$

#### Proof:

 $P(|X - \mu| \ge \epsilon) = \sum_{|x-\mu| \ge \epsilon} m_X(x)$ 

$$\epsilon^2 P(|X-\mu| \ge \epsilon) = \sum_{|x-\mu| \ge \epsilon} \epsilon^2 m_X(x) \le \sum_{|x-\mu| \ge \epsilon} (x-\mu)^2 m_X(x) \le \sum_{x \in \Omega} (x-\mu)^2 m_X(x)$$

- Let X by any random variable with  $E[X] = \mu$  and  $V[X] = \sigma^2$
- If  $\epsilon = k\sigma$ , the Chebyshev Inequality states

$$P(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{(k\sigma)^2} = \frac{1}{k^2}$$

• Thus, for any random variable, the probability of a deviation from the mean of more than k standard deviations is  $\leq \frac{1}{b^2}$ .

$$P(|X - \mu| \ge \epsilon) \le \frac{V[X]}{\epsilon^2}$$

- $\cdot$  Can we replace  $\leq$  by strict inequality <?
- + For a given  $\epsilon$  is there a random variable X such that

$$P(|X - \mu| \ge \epsilon) = \frac{V[X]}{\epsilon^2}?$$

#### Theorem

Let X be discrete or continuous random variable with expected value  $\mu = E[X]$ , and let  $\epsilon > 0$  be any positive real number. Then

$$P(|X - \mu| \ge \epsilon) \le \frac{V[X]}{\epsilon^2}$$

**Proof:** For the continuous case replace in the appropriate manner  $\sum$  by  $\int$ .

$$P(|X - \mu| \ge \epsilon) \le \frac{V[X]}{\epsilon^2}$$

• Let X be a random variable with E[X] = 0 and V[X] = 1. What integer value k will assure us that  $P(|X| \ge k) \le .01$ ?

#### Theorem

Let  $X_1, X_2, ..., X_n$  be an independent trials process, with finite expected value  $\mu = E[X_j]$  and finite variance  $\sigma^2 = V[X_j]$ . Let  $S_n = X_1 + X_2 + \cdots + X_n$ . Then for any  $\epsilon > 0$ ,

$$P\left(\left|\frac{\mathsf{S}_n}{n}-\mu\right|\geq\epsilon\right)\to0$$

as  $n \to +\infty$ . Equivalently,

$$P\left(\left|\frac{\mathsf{S}_n}{n}-\mu\right|<\epsilon\right)\to 1$$

as  $n \to +\infty$ .

Prove it!

Edgar Costa

### Binomial



Edgar Costa

Math 20, Fall 2017

Week 6 15 / 16

What do Chebyshev's Inequality and the Law of Large Numbers say about the probability of getting at least 75 heads when flipping a fair coin 100 times? Hint: the binomial distribution is symmetric.