Math 20, Fall 2017

Edgar Costa
Week 2
Dartmouth College

Resources

- Tutorial: Thursdays 7-8:30 pm
- Office hours: M: 5:30-7+ pm, Th: 8-9 am, and by appointment
- Study groups: Sundays 3:30pm - 5:00pm

Students can begin registering for Study Groups on Sunday, September 17th by accessing: studygroups.dartmouth.edu and logging in with their netID and password.

Birthday paradox

How many people do we need to have in a room to make it a favorable bet (probability of success greater than $1 / 2$) that at least two people in the room will have the same birthday?
If there are n people in the room, what is the probability that all of them have different birthday?

$$
\frac{365 \cdot 364 \cdot 363 \cdots(365-(n-1))}{365 \cdot 365 \cdot 365 \cdots 365}
$$

Challenge

Why not

$$
\frac{n \text { objects unordered, without repetition, from } 365}{n \text { objects unordered, with repetition, from } 365}=\frac{\binom{365}{n}}{\binom{n+(365-1)}{365-1}} \text { ?? }
$$

Independent events

Definition

Two events A and B are independent if $P(A \cap B)=P(A) \cdot P(B)$

Example (non independent events)

We have a box with n_{B} blue balls and n_{R} red balls, $n_{B}+n_{R}=N$.

- $A=\{$ choosing a red ball on the first pick $\}$
- $B=\{c h o o s i n g ~ a ~ b l u e ~ b a l l ~ o n ~ t h e ~ s e c o n d ~ p i c k, ~ w i t h o u t ~ r e p l a c e m e n t ~\} ~$
- $P(A)=n_{R} / N$
- $P(A \cap B)=\frac{n_{R} n_{B}}{N(N-1)}$
- $P(B)=P(B \cap A)+P(B \cap(\operatorname{not} A))=\frac{n_{R} n_{B}}{N(N-1)}+\frac{n_{B}\left(n_{B}-1\right)}{N(N-1)}=\frac{n_{B}}{N}$

Draw picture!

Independent events

Definition

Two events A and B are independent if $P(A \cap B)=P(A) \cdot P(B)$

Example (independent events)

We have a box with n_{B} blue balls and n_{R} red balls, $n_{B}+n_{R}=N$.

- $B=$ \{choosing a blue ball on the second pick, with replacement $\}$
- $P(A)=n_{R} / N$
- $P(A \cap B)=\frac{n_{R} n_{B}}{N^{2}}$
- $P(B)=P(B \cap A)+P(B \cap($ not $A))=\frac{n_{R} n_{B}}{N^{2}}+\frac{n_{B}^{2}}{N^{2}}=\frac{n_{B}}{N}$

Draw picture!

Independent events

Independence allows us to break down complex events into simpler ones.
You toss a fair coin n times, what is the probability of getting heads k times?
$X=$ number of heads in n tosses

$$
P(X=k)=?
$$

Assuming that each toss independent, the sequence with k H's followed by $(n-k)$ T's has probability

$$
P\left(H_{1}\right) P\left(H_{2}\right) \cdots P\left(H_{k}\right) P\left(T_{1}\right) \cdots P\left(T_{n-k}\right)=p^{k}(1-p)^{n-k} .
$$

There are $\binom{n}{k}$ ways to rearrange the sequence above, all with same probability,

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Conditional probability

If two events A and B are not independent we write

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A),
$$

where $P(B \mid A)$ stands for the probability that B occurs, given that A occurs. It is called a conditional probability, is read as "the probability of B, given A."

Example

You have two boxes, X and Y. The box X has 2 red balls and 5 blue balls, the ball Y has 3 balls of each. Assume a box is chosen at random and a ball is chosen at random from it.
-What is the probability of picking the red ball, given that we pickedthe box X ?

- What is the probability of picking a red ball?
- What is the probability of picking the box X, given that we picked a red ball?

Problem

A die is rolled twice. What is the probability that the sum of the faces is greater than 7, given that

- the first outcome was a 4?
- the first outcome was greater than 3?
- the first outcome was a 1?
- the first outcome was less than 5 ?

More problems

1. Suppose a drug test is 99% sensitive and 99% specific. That is, the test will produce 99% true positive results for drug users and 99% true negative results for non-drug users. Suppose that 0.5% of people are users of the drug. What is the probability that a randomly selected individual with a positive test is a user?
2. The three machines account for different amounts of the factory output, namely $20 \%, 30 \%$, and 50%. The fraction of defective items produced is this: for the first machine, 5%; for the second machine, 3%; for the third machine, 1%. If an item is chosen at random from the total output and is found to be defective, what is the probability that it was produced by the third machine?

Source: https://en.wikipedia.org/wiki/Bayes\'_theorem

Formalizing probability - Random Variables, Sample Spaces, Outcomes and Events

- We represent the outcome of the experiment by a capital Roman letter, such as X, called a random variable.
- The sample space of the experiment is the set of all possible outcomes. If the sample space is either finite or countably infinite, the random variable is said to be discrete.
- The elements of a sample space are called outcomes.
- A subset of the sample space is called an event.

Formalizing probability - Distribution Functions

- Let X be a random variable which denotes the value of the outcome of a certain experiment.
- Let Ω be the sample space of the experiment (i.e., the set of all possible values of X, or equivalently, the set of all possible outcomes of the experiment.)

A distribution function for X is a function $m_{X}: \Omega \rightarrow \mathbb{R}$ which satisfies

1. $m_{x}(\omega) \geq 0$, for all $\omega \in \Omega$, and
2. $\sum_{\omega \in \Omega} m_{X}(\omega)=1$.

Formalizing probability - Probability of an event

For any subset E of Ω, we define the probability of E to be the number $P(E)$ given by

$$
P(E)=\sum_{\omega \in E} m_{X}(\omega)
$$

Example

- $X=$ random variable with n equally likely events
- $\Omega=\left\{x_{1}, \ldots, x_{n}\right\}$
- $m_{x}\left(x_{i}\right)=1 / n$
- $P(E)=\sum_{\omega \in E} m_{x}(\omega)=\# E \frac{1}{n}=\frac{\# E}{\# \Omega}=\frac{\text { number of favorable outcomes }}{\text { total number of outcomes }}$

Examples

Three people, A, B, and C, are running for the same office, and we assume that one and only one of them wins. Suppose that A and B have the same chance of winning, but that C has only $1 / 2$ the chance of A or B. What is the probability to win for each of the three people?

- Rolling a die
- Tossing a coin
- Picking a ball
- Rolling two dice
- Sum of two rolls

Basic set operations

A and B two events

- the intersection of A and B is the set $A \cap B=\{x: x \in A$ and $x \in B\}$
- the union of A and B is the set $A \cup B=\{x: x \in A$ or $x \in B\}$
- the complement of A is the set $\bar{A}=\{x: x \in \Omega$ and $x \notin A\}$

Properties

The probabilities assigned to events by a distribution function on a sample space Ω satisfy the following properties:

1. $P(E) \geq 0$ for every $E \subset \Omega$.
2. $P(\Omega)=1$.
3. If $E \subset F \subset \Omega$, then $P(E) \leq P(F)$.
4. If A and B are disjoint subsets, then $P(A \cup B)=P(A)+P(B)$
5. $P(\bar{A})=1-P(A)$ for every $A \subset \Omega$.

Can you prove these?

Inclusion-Exclusion Principle

Inclusion-Exclusion principle

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)= & \sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leq i<j \leq n} P\left(A_{i} \cap A_{j}\right) \\
& +\sum_{1 \leq i<j<k \leq n} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots
\end{aligned}
$$

-What is the probability of drawing a king or a heart?

- Two cards are drawn at random. What is the probability of drawing a king or an ace?

The hat problem (GS: Example 3.12)

In a restaurant n hats are checked and they are hopelessly scrambled; what is the probability that no one gets his own hat back?

- What is the probability that the i-th person gets her hat back?
- What is the probability that the i-th and the j-th person get their hat back?
- What is the probability that at least someone gets their hat back?

$$
\begin{gathered}
\binom{n}{1} \frac{n-1)!}{n!}-\binom{n}{2} \frac{(n-2)!}{n!}+\binom{n}{3} \frac{(n-3)!}{n!} \cdots+(-1)^{n-1}\binom{n}{n} \frac{1}{n!} \\
\xrightarrow[n \rightarrow+\infty]{ } \frac{1}{e}
\end{gathered}
$$

