## MATH 20, WORKSHEET 8

EDGAR COSTA

Due Friday November 10th
(1) Let $P$ be the transition matrix of a Markov chain. Show that the $i j$ th of the matrix $P^{n}$ gives the probability that the Markov chain, starting in state $s_{i}$, will be in state $s_{j}$ after $n$ steps. Prove this by induction. Explicitly,
(a) show that this is true for $n=1$. (this is just by definition)
(b) assuming that this is true for a given $k$, show that it is also true for $k+1$.
(2) Given that

$$
\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} Q^{k}=N
$$

where $Q$ is the submatrix of the transient states.
Let $Y$ be the random variable that gives you the number of steps until absorption, given that you started in state $s_{i}$.
(a) Compute $P(Y \geq k)$.
(b) Show that $E[Y]=\sum_{l=1}^{t} n_{i l}$, i.e., the sum of the entries in $i$ th row of $N$.

Please, do not use that the $i j$-entry $n_{i j}$ of the matrix $N$ is the expected number of times the chain is in state $s_{j}$, given that it starts in state $s_{i}$.

Hint: Look into Problem 1 of Worksheet 4.
(3) Let $b_{i j}$ be the probability that an absorbing chain will be absorbed in the absorbing state $s_{j}$ if it starts in the transient state $s_{i}$. Let $B$ be the matrix with entries $b_{i j}$. Show that $B$ is a $t \times r$ matrix, and

$$
B=N R,
$$

where $N$ is the fundamental matrix and $R$ is as in the canonical form.
Hint: The proof in the book Theorem 11.6 is a rough sketch, you need to formalize it.

