MATH 20, WORKSHEET 4

EDGAR COSTA

Due Friday October 2nd

(1) Let X be a discrete random variable that takes only positive integer values. Our normal formula for the expected value of X says

$$
E[X]=\sum_{k=1}^{+\infty} k P(X=k) .
$$

Prove the following alternate formula:

$$
E[X]=\sum_{k=1}^{+\infty} P(X \geq k)
$$

Answer: Since k is always an integer, we can use the fact that

$$
k \cdot P(X=k)=\underbrace{P(X=k)+P(X=k)+\cdots+P(X=k)}_{k \text { times }} .
$$

Note also that since X takes only values in the positive integer we may write

$$
\begin{equation*}
P(X \geq k)=P(X=k)+P(X=k+1)+\cdots . \tag{0.1}
\end{equation*}
$$

Suppose that we take the sum

$$
\sum_{k=1}^{\infty} P(X \geq k)
$$

and use equation (1) to expand. We get

$$
\sum_{k=1}^{\infty}(P(X=k)+P(X=k+1)+P(X=k+2)+\cdots) .
$$

How often is a particular term $P(X=N)$ counted in this sum? It appears once in $P(X \geq 1)$, once in $P(X \geq 2)$, etc, all the way up to $P(X \geq N)$, and then it doesn't appear in the rest of the terms. Thus, $P(X=N)$ is counted N times-once in each of the first N terms. Therefore,

$$
\sum_{k=1}^{\infty} P(X \geq k)=\sum_{k=1}^{\infty} k P(X=k)=E[X]
$$

and the identity is proved.
(2) Compute the expected value of the geometric distribution with parameter p.
Answer: X only takes values in the positive integers. Using the above formula

$$
\begin{align*}
E[X] & =\sum_{k=1}^{+\infty} P(X \geq k) \\
& =\sum_{k=1}^{+\infty}(1-p)^{k-1} \\
& =\sum_{l=0}^{+\infty}(1-p)^{l} \\
& =\frac{1}{1-(1-p)}=\frac{1}{p}
\end{align*}
$$

For $p=0$,
(3) Recall that if $P(A)>0$, then $X \mid A$ is a random variable where

$$
m_{X \mid A}(x)=P(X=x \mid A)= \begin{cases}\frac{m_{X}(x)}{P(A)}, & \text { if } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
E[X \mid A]=\sum_{x \in \Omega} x \cdot P(X=x \mid A)
$$

(a) Assume that $P($ not $A)>0$. Write $E[X]$ in terms of $E[X \mid A]$ and $E[X \mid$ not $A]$. (Hint: see the formula below)
Answer: The formula desired is

$$
E[X]=P(A) E[X \mid A]+P(\operatorname{not} A) E[X \mid \operatorname{not} A] .
$$

This is part (b) below with $k=2, F_{1}=A$ and $F_{2}=\operatorname{not}$ A.
(b) Assume that $F_{1}, F_{2}, \ldots, F_{k}$ are events with positive probability, pair wise disjoints and $\Omega=F_{1} \cup F_{2} \cup \cdots \cup F_{k}$. Show that

$$
E[X]=\sum_{j=1}^{k} E\left[X \mid F_{j}\right] P\left(F_{j}\right)
$$

Answer: See Theorem 6.5 in Grinstead and Snell's Introduction to Probability.

