MATH 20, WORKSHEET 4

EDGAR COSTA

Due Friday October 6th

(1) Let X be a discrete random variable that takes only positive integer values. Our normal formula for the expected value of X says

$$
E[X]=\sum_{k=1}^{+\infty} k P(X=k) .
$$

Prove the following alternate formula:

$$
E[X]=\sum_{k=1}^{+\infty} P(X \geq k) .
$$

(2) Compute the expected value of the geometric distribution with parameter p.
(3) Recall that if $P(A)>0$, then $X \mid A$ is a random variable where

$$
m_{X \mid A}(x)=P(X=x \mid A)= \begin{cases}\frac{m_{X}(x)}{P(A)}, & \text { if } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
E[X \mid A]=\sum_{x \in \Omega} x \cdot P(X=x \mid A)
$$

(a) Assume that $P($ not $A)>0$. Write $E[X]$ in terms of $E[X \mid A]$ and $E[X \mid$ not $A]$. (Hint: see the formula below)
(b) Assume that $F_{1}, F_{2}, \ldots, F_{k}$ are events with positive probability, pair wise disjoints and $\Omega=F_{1} \cup F_{2} \cup \cdots \cup F_{k}$. Show that

$$
E[X]=\sum_{j=1}^{k} E\left[X \mid F_{j}\right] P\left(F_{j}\right)
$$

