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Introduction

There are many examples of Markov Chains used in science and
technology. Here are some applications in “pop culture:”

• Modeling the action in a game of Monopoly (for example, we can
predict how many times you’ll land on a given square)

• Google’s PageRank Algorithm (Google’s secret to becoming the
most successful search engine on the web)
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Rules of Monopoly

A Monopoly board has 40 positions:
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Rules of Monopoly

• All players start at position 0 (“Go”). At each turn, a player rolls 2
dice and moves according to the sum of their values.

• If the player rolls doubles, he rolls again after taking his turn. If he
rolls three doubles in a row, then he lands in jail.

• If the player lands on a property that is not owned by another
player, he has the opportunity to purchase it. If the property is
already owned by another player, then he has to pay a fee.

• The goal is to accrue more money than the other players by the
end of the game (which generally happens if you have a
“monopoly” on the property on the game board).
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Markov and Monopoly

Monopoly is ideally-suited to modeling with a Markov chain:

• The states are the squares on the board and each turn corresponds
to a step. The transition matrix is a 40 × 40 matrix containing the
probabilities of moving from each square to each other square.

• The moves are discrete (determined by the roll of a die).

• Given a player’s starting position at each turn, we can determine
the probability that he will land on each of the other 39 positions
(states) on the board. The probabilities associated with the steps
will be nonnegative and sum to 1.

• For any fixed starting position, the probability of landing on each
of the other 39 positions will always be the same (i.e. it will not
change based on the number of times that you’ve landed on this
square previously or based on the squares that you visited
previously).
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Why Model Monopoly?

Monopoly is a game that is worth modeling because there is some
value in knowing how likely a player is to land on a given property.
For example, if you’re trying to determine a strategy of which
properties to buy, it can be useful to know which ones the other
players are likely to land on most frequently.

Candy Land, on the other hand, doesn’t involve any real strategy so,
even though you could assign probabilities to landing on each square,
examining it as a Markov chain won’t make us any more successful at
playing the game.
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Surprising Results

The ten most frequently-occurring squares that a player will visit:

(Notice that Jail is #1!)
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Strategy Tips to Glean from the Math

You can’t own Jail, Go, or Free Parking, but you might as well try to
purchase as many of the following as possible: Illinois Avenue, B&O
Railroad, Tennessee Avenue, New York Avenue, Reading Railroad, St.
James Place, Water Works, Pennsylvania Railroad.

If you’re a Monopoly aficionado/a, you may notice that Tennessee
Ave., New York Ave. and St. James Place are grouped together on
the board (they’re orange squares). The Pennsylvania Railroad,
Illinois Ave. and B&O Railroad are very close to the orange cluster.

What’s going on here???
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A Possible Explanation for the Clustering Phenomenon

It’s important to remember that Monopoly players spend a lot of time
in Jail. Keeping that in mind, let’s examine the number of spaces
that it takes to go from Jail to some of these properties:

• Pennsylvania Railroad (5)

• St. James Place (6)

• Tennessee Ave. (8)

• New York Ave. (9)

It’s also important to remember that the most frequently-occurring
sum of two die is 7, followed by 6 and 8, followed by 5 and 9.
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Secondary (and Tertiary, etc.) Effects

Of course, this doesn’t tell the whole story, since rolling doubles
results in getting a second turn (there are 6 possible pairs of doubles
that you can get, making you just as likely to roll doubles as you are
to roll a 7!), Jail is not unique in its “clustering” effect (the properties
that are 5-10 spaces after Go are also fairly likely to be landed on),...

And then there’s the fact that the properties themselves have
different costs (to purchase) and demand different fees (from the
other players)!
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An “Expected Values” Approach

The following chart gives the break even point (i.e. number of rolls
until you earn back what you spent on your investment) as well as the
expected value per roll (in dollars) for each color group:

Notice that the orange group (St. James Place, Tennessee Ave. and
New York Ave.) reaches break even point fastest, but the green group
(Pennsylvania Ave., North Carolina Ave., Pacific Ave.) has the
highest overall value per roll.
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A More Lucrative Application

Sure, it’s nice to win at Monopoly, but there’s only so much
happiness that you can get from paper money. Google has managed
to turn Markov chains into fat stacks of legal U.S. tender. We’ll
discuss the brilliant (yet fairly simple) idea behind Google’s powerful
search algorithm, now famously called the PageRank algorithm.
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The Search Engine Problem

The goal of a search engine is to help an internet user find a website
that matches his or her needs as quickly as possible. How is a
machine supposed to understand what the human user is actually
looking for? With more than 150 million websites and blogs out
there, how can a search engine distinguish a reputable website from
some crackpot’s online collection of personal rants?
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Google’s Clever Algorithm

The idea behind the PageRank algorithm is similar to the idea of the
impact factor used to rank journals. The impact factor of a journal is
defined to be the average number of citations per recently published
paper in that journal. In general, the higher the impact factor, the
more “important” the journal (at least, in the eyes of academics).

By regarding each web page as a journal and each link as a citation,
Google attempted to measure the importance of a web page by the
number of links leading to it. As with journal citations, having a more
credible website (i.e. one affiliated with a major corporation or
university or government agency) link to your website increases the
likelihood that it is “important.” As a result, the ranked list of search
results that Google returns tends to have the websites with the
highest number of credible links (TO their sites) listed first.
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Markov Chain for PageRank: The Set-up

• Let N be the total number of web pages on the internet.

• Let k be the number of outgoing links of web page j . (i.e. we can
think of web page j as a node and k as its out-degree).

• Let P be the hyperlink matrix, with elements

pij =

{
1
k if webpage i is an outgoing link of webpage j
0 otherwise

The hyperlink matrix can be thought of as the transition matrix for
our Markov Chain (as you proved on this week’s proof assignment).
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Markov Chain for PageRank: How it Works

We can regard a web surfer as a “random walker” and the web pages
that the web surfer visits as the states of the Markov chain. We
assume that pages that he revisits often must be “important,”
because they must be pointed to by many other important pages
(since his surfing is random).

Assuming that the Markov chain is ergodic and aperiodic (i.e. the
powers of P won’t form a repeating cycle), then the limiting vector
w = (w1,w2, · · · ,wN) exists.

Each wi is the proportion of the time that the surfer clicks on the link
for webpage i . The higher the value of wi , the more “important” web
page i will be. The PageRank of webpage i is defined by wi .
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PageRank for Non-ergodic Markov Chains

In the world of web surfing, the Markov chains won’t always be
ergodic. For example, It might be the case that a website doesn’t
have any external links (such websites are called “dangling nodes”).
This is a common problem - for example, pdf files, image files and
data tables are often dangling nodes.

Transition matrices have rows and columns consisting solely of 0’s
where these dangling nodes occur (hence, these Markov chains won’t
be ergodic). In order to get around this problem, Google developers
perform a stochasticity adjustment, in which they simply replace the
rows consisting of all 0’s in the transition matrix with 1

ne
T . This

forces our new matrix to be stochastic. We’ll call our new stochastic
matrix S .
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The Google Matrix

The new matrix S may be stochastic, but we still aren’t guaranteed
that it will have the desired convergence results. In order to guarantee
convergence, Google developers make a second adjustment: while the
random web surfer follows the hyperlink structure of the Web, at
times he is bored and abandons the hyperlink method of surfing by
entering a new destination into his browser’s URL line.

By doing this, the random surfer “teleports” to a new page, where he
begins hyperlink surfing again (until the next teleportation). To
model this activity mathematically, Google invented a new matrix

G = αS + (1 − α)E ,

where α is a scalar between 0 and 1 and E = 1
nee

T is the
“teleportation matrix”. The matrix G is called the Google matrix.
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Finishing Up

The good news is that G is an ergodic, regular, aperiodic Markov
chain, so once again we can find a limiting vector.

It has been proven that this method converges on the ‘limiting vector’
for the transition matrix in approximately 50 iterations (when used
over a web data set of over 80 million webpages!). So, it’s pretty
efficient!

Unfortunately, PageRank is a little outdated at this point (it was
created circa 1997 and Googles competition has become stiffer since
then). The current Google algorithm is a carefully-guarded secret.
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More Information

There are many interesting websites, books and journal articles that
discuss these topics in greater detail. A few good starting points
include:

Langville, Amy N. and Meyer, Carl Dean. Google’s PageRank and
Beyond: The Science of Search Engine Rankings.

Ash, Robert B. and Bishop, Richard L. “Monopoly as a Markov
Process.” Math. Mag. 45 (1972): 26-29.

Peterson, Ivars. “Monopoly Dollars and Sense.”
http://www.maa.org/mathland/mathland 6 9.html

Monopoly probabilities applet:
http://www.bewersdorff-online.de/amonopoly/
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Other Courses at Dartmouth

If you found Markov chains interesting, you could also consider taking
Math 100: Markov Chain Monte Carlo (taught by Dartmouth’s
own expert probabilist, Pete Winkler) this winter. The only
pre-requisites for the course are Math 20 and Math 22.
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