MATH1 Day 17: The Derivative

Angelica Babei

October 19, 2016

Intro to the Derivative

$$
f(t)=-\frac{800}{289}\left(t^{2}-17 t\right)
$$

Intro to the Derivative

Group 1: Find the average speed on the interval $[5,5.4]$
Group 2: Find the average speed on the interval $[5,5.3]$
Group 3: Find the average speed on the interval $[5,5.2]$
Group 4: Find the average speed on the interval $[5,5.1]$
$f(5)=166.09, f(5.1)=168, f(5.2)=169.85, f(5.3)=171.65, f(5.4)=$ 173.4

Intro to the Derivative: Definition

Definition

The derivative of f at a is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided this limit exists. We read this " f prime at a". This gives us instantaneuous speed at a, as well as the slope of the tangent line to the graph of f passing through $(a, f(a))$

The derivative as a function: Definition

Definition

The derivative of f is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided this limit exists. We read this " f prime"

Examples:

1. Find $f^{\prime}(x)$ where $f(x)=2 x^{2}-x$, and find the equaton of the tangent line at $x=-1, x=0, x=1$.
2. (If done with the above) Find $f^{\prime}(x)$ where $f(x)=x^{3}+x-1$, and find the equaton of the tangent line at $x=0$.

Examples:

1. Find $f^{\prime}(x)$ where $f(x)=2 x^{2}-x$, and find the equaton of the tangent line at $x=-1, x=0, x=1$.
2. (If done with the above) Find $f^{\prime}(x)$ where $f(x)=x^{3}+x-1$, and find the equaton of the tangent line at $x=0$.

Examples:

1. Find $f^{\prime}(x)$ where $f(x)=2 x^{2}-x$, and find the equation of the tangent line at $x=-1,0,1$

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-(x+h)-\left(2 \cdot x^{2}-x\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{2\left(x^{2}+2 h x+h^{2}\right)-(x+h)-\left(2 x^{2}-x\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{2 x^{2}+4 h x+2 h^{2}-x-h-2 x^{2}+x}{h}= \\
\lim _{h \rightarrow 0} \frac{2 h^{2}+4 h x-h}{h}=\lim _{h \rightarrow 0}(2 h+4 x-1)=4 x-1
\end{gathered}
$$

$f^{\prime}(0)=-1, f(0)=0$, so the tangent line at $x=0$ is $y=-x$ $f^{\prime}(1)=3, f(1)=1$, so the tangent line at $x=1$ is $y-1=3(x-1)$ $f^{\prime}(-1)=-5, f(-1)=3$, so the tangent line at $x=-1$ is $y-3=-5(x+1)$

Examples:

2. Find $f^{\prime}(x)$ where $f(x)=x^{3}+x-1$, and find the equaton of the tangent line at $x=0$.

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{(x+h)^{3}+(x+h)-1-\left(x^{3}+x-1\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x+h-1-x^{3}-x+1}{h}= \\
\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}+h}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}+1\right)=3 x^{2}+1 \\
f^{\prime}(0)=1, f(0)=-1, \text { so the tangent line at } x=0 \text { is } y+1=0
\end{gathered}
$$

Tangent line as an approximation of the graph

FIGURE 2 Zooming in toward the point $(1,1)$ on the parabola $y=x^{2}$
Figure: Taken from Stewart

