MATH1 Day 15: Continuity

Angelica Babei

October 14, 2016

イロト イヨト イヨト イヨト

Continuity at a point

Definition

A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Note! If the function is not defined on one side of the point, we take $\lim_{x \to a} f(x)$ to be equal to the one-sided limit where the function is defined.

Continuity on an interval

Definition

A function f is continuous on an interval if it is continuous at every number in the interval.

Using the definition of continuity, answer the following question: Is f(x) continuous at x = 2? Is f(x) continuous on its domain?

3

(日) (同) (三) (三)

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

୬୯୯

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

$$f(x) = \frac{1}{(x-2)^2}$$

◆□→ ◆□→ ◆注→ ◆注→ □注

October 14, 2016 8 / 13

Continuity properties

Theorem

If f and g are continuous at a and if c is a constant, then the following functions are also continuous at a:

- Image: Image
- If g
- Image: Image of the second second

•
$$\frac{f}{g}$$
 if $g(a) \neq 0$

3

- 4 同 6 4 日 6 4 日 6

Continuity properties - part II

Theorem

If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Intermediate Value Theorem

Theorem

Suppose that f is continuous on the closed interval [a, b] and let S be any number between f(a) and f(b) where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = S.

The Comparison Theorem

Theorem

If $f(x) \le g(x)$ when x is near a (except possibly at a), and both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

 $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x).$

イロト イポト イヨト イヨト 二日

The Squeeze Theorem

Theorem

If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a), and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then

$$\lim_{x\to a}g(x)=L.$$

(日) (周) (三) (三)