MATH1 Day 15: Continuity

Angelica Babei

October 14, 2016

Continuity at a point

Definition

A function f is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Note! If the function is not defined on one side of the point, we take $\lim _{x \rightarrow a} f(x)$ to be equal to the one-sided limit where the function is defined.

Continuity on an interval

Definition

A function f is continuous on an interval if it is continuous at every number in the interval.

Using the definition of continuity, answer the following question: Is $f(x)$ continuous at $x=2$? Is $f(x)$ continuous on its domain?

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if } x=2 \\
\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2
\end{array}\right.
$$

$$
f(x)=\frac{1}{(x-2)^{2}}
$$

$$
f(x)= \begin{cases}1 & \text { if } x<2 \\ 2 & \text { if } x \geq 2\end{cases}
$$

Continuity properties

Theorem

If f and g are continuous at a and if c is a constant, then the following functions are also continuous at a:
(1) $f+g$
(2) $f g$
(3) $f-g$
(c) $\frac{f}{g}$ if $g(a) \neq 0$
(5) cf

Continuity properties - part II

Theorem
If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g)(x)=f(g(x))$ is continuous at a.

Intermediate Value Theorem

Theorem

Suppose that f is continuous on the closed interval $[a, b]$ and let S be any number between $f(a)$ and $f(b)$ where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=S$.

The Comparison Theorem

Theorem

If $f(x) \leq g(x)$ when x is near a (except possibly at a), and both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

```
\mp@subsup{\operatorname{lim}}{x->a}{}f(x)\leq\mp@subsup{\operatorname{lim}}{x->a}{g}g(x).
```


The Squeeze Theorem

Theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a), and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L,
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

