MATH1 Day 15: Continuity

Angelica Babei

October 12, 2016

Continuity at a point

Definition

A function f is continuous at a number a if

$$\lim_{x\to a} f(x) = f(a).$$

Note! If the function is not defined on one side of the point, we take $\lim_{x\to a} f(x)$ to be equal to the one-sided limit where the function is defined.

Continuity on an interval

Definition

A function f is continuous on an interval if it is continuous at every number in the interval.

Using the definition of continuity, answer the following question: Is f(x) continuous at x = 2? Is f(x) continuous on its domain?

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

October 12, 2016 5 / 10

$$f(x) = \begin{cases} 1 & \text{if } x = 2\\ \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2 \end{cases}$$

$$f(x) = \frac{1}{(x-2)^2}$$

$$f(x) = \begin{cases} 1 & \text{if } x < 2 \\ 2 & \text{if } x \ge 2 \end{cases}$$

Continuity properties

Theorem

If f and g are continuous at a and if c is a constant, then the following functions are also continuous at a:

- $\mathbf{0} f + g$
- g fg
- \circ f-g
- of

Continuity properties - part II

Theorem

If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.