MATH1 Day 16: The Squeeze Theorem and the Derivative

Angelica Babei

October 17, 2016

The Squeeze Theorem

Theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a), and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L,
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

The Squeeze Theorem Part II

1. If $f(x)$ is always between $x^{2}+2$ and $2 x+1$, find $\lim _{x \rightarrow 1} f(x)$.
2. Use the relation $\cos (x) \leq \frac{\sin (x)}{x} \leq 1$ to find $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
3. Let $f(x)$ be a function which satisfies $5 x-6 \leq f(x) \leq x^{2}+3 x-5$ for all $x \geq 0$. Compute $\lim _{x \rightarrow 1} f(x)$.

Example Show

$$
\lim _{x \rightarrow 0} x^{2} \arctan \left(\frac{1}{x}\right)=0
$$

We can't use the product property of limits, since $\lim _{x \rightarrow 0} \arctan \left(\frac{1}{x}\right)$ does not exists. However, we can use the Squeeze theorem: we know

$$
-\frac{\pi}{2} \leq \arctan \left(\frac{1}{x}\right) \leq \frac{\pi}{2}
$$

and

$$
-x^{2} \frac{\pi}{2} \leq x^{2} \arctan \left(\frac{1}{x}\right) \leq x^{2} \frac{\pi}{2}
$$

We know that $\lim _{x \rightarrow 0} x^{2} \frac{\pi}{2}=0, \lim _{x \rightarrow 0}\left(-x^{2} \frac{\pi}{2}\right)=0$, so by the Squeeze theorem,

$$
\lim _{x \rightarrow 0} x^{2} \arctan \left(\frac{1}{x}\right)=0
$$

The Squeeze Theorem Part III

Find

$$
\lim _{x \rightarrow 3}(x-3)^{2} \sin \left(\frac{1}{\sqrt{x-3}}\right)
$$

Solution:

We know that

$$
-1 \leq \sin \left(\frac{1}{\sqrt{x-3}}\right) \leq 1
$$

so

$$
-(x-3)^{2} \leq(x-3)^{2} \sin \left(\frac{1}{\sqrt{x-3}}\right) \leq(x-3)^{2}
$$

Since $\lim _{x \rightarrow 3}-(x-3)^{2}=0, \lim _{x \rightarrow 3}(x-3)^{2}=0$, by the Squeeze theorem,

$$
\lim _{x \rightarrow 3}(x-3)^{2} \sin \left(\frac{1}{\sqrt{x-3}}\right)=0
$$

The Squeeze Theorem

Exercise 1. Find

$$
\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{2 x+1}{x^{2}}\right)}
$$

Exercise 2. Find

$$
\lim _{x \rightarrow-3}(x+3)^{2} \cos \left(\frac{2}{x+3}\right)
$$

Exercise 1. Find

$$
\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{2 x+1}{x^{2}}\right)}
$$

Solution:

We know

$$
-1 \leq \cos \left(\frac{2 x+1}{x^{2}}\right) \leq 1
$$

so

$$
\begin{gathered}
e^{-1} \leq e^{\cos \left(\frac{2 x+1}{x^{2}}\right)} \leq e^{1} \\
x^{2} e^{-1} \leq x^{2} e^{\cos \left(\frac{2 x+1}{x^{2}}\right)} \leq x^{2} e^{1}
\end{gathered}
$$

Since $\lim _{x \rightarrow 0} x^{2} e^{-1}=0, \lim _{x \rightarrow 0}\left(x^{2} e\right)=0$, by the Squeeze theorem
$\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{2 x+1}{x^{2}}\right)}=0$

Exercise 2. Find

$$
\lim _{x \rightarrow-3}(x+3)^{2} \cos \left(\frac{2}{x+3}\right)
$$

Solution:

We know that

$$
\begin{gathered}
-1 \leq \cos \left(\frac{2}{x+3}\right) \leq 1 \\
-(x+3)^{2} \leq(x+3)^{2} \cos \left(\frac{2}{x+3}\right) \leq(x+3)^{2}
\end{gathered}
$$

Since $\lim _{x \rightarrow-3}(x+3)^{2}=0, \lim _{x \rightarrow-3}-(x+3)^{2}=0$, by the Squeeze theorem,
$\lim _{x \rightarrow-3} x^{2} \cos \left(\frac{2}{x+3}\right)=0$

Intro to the Derivative

$$
f(t)=-\frac{800}{289}\left(x^{2}-17 x\right)
$$

Intro to the Derivative

Group 1: Find the average speed on the interval $[5,5.4]$
Group 2: Find the average speed on the interval $[5,5.3]$
Group 3: Find the average speed on the interval $[5,5.2]$
Group 4: Find the average speed on the interval $[5,5.1]$
$f(5)=166.09, f(5.1)=168, f(5.2)=169.85, f(5.3)=171.65, f(5.4)=$ 173.4

Intro to the Derivative: Definition

Definition

The derivative of f at a is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided this limit exists. We read this " f prime at a".

