PRACTICE PROBLEMS

(1) Find the vertical and horizontal asymptotes of the following functions:
(a) $f(x)=\frac{x^{2}-x-6}{x^{2}-x-20}$

Solution: The horizontal asymptote is given by $\lim _{x \rightarrow \infty} \frac{x^{2}-x-6}{x^{2}-x-20}=1$ (since we have the same power of x in both numerator and denominator, the limit is given by the ratio of the coefficents in front of the highest power of x, which is x^{2}), so $y=1$ is a horizontal asymptote.
Using the quadratic formula, we factor the numerator and denominator

$$
f(x)=\frac{x^{2}-x-6}{x^{2}-x-20}=\frac{(x-3)(x+2)}{(x-5)(x+4)}
$$

and the vertical asymptotes are given by $x=5, x=-4$.
(b) $g(x)=\frac{x+1}{(x+3)(x+5)}$

Solution: The horizontal asymptote is given by $\lim _{x \rightarrow \infty} \frac{x+1}{(x+3)(x+5)}=0$ (since we have larger powers on the denominator), so $y=0$ is a horizontal asymptote. The vertical asymptotes are given by $x=-3, x=-5$.
(c) $h(x)=\frac{(x+1)^{2}}{x^{2}+4 x+3}$

Solution: The horizontal asymptote is given by

$$
\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{x^{2}+4 x+3}=\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{2}+4 x+3}=1,
$$

so $y=1$ is a horizontal asymptote.
Using the quadratic formula, we factor the denominator

$$
h(x)=\frac{(x+1)^{2}}{(x+1)(x+3)}=\frac{x+1}{x+3} \quad \text { when } x \neq 1
$$

and the vertical asymptote is given by $x=-3(x=-1$ is not a vertical asymptote; instead, the function has a removable discontinuity at $x=-1$)
(2) On what intervals are the following functions continuous?
(a) $\arctan \left(-x^{2}+\frac{5}{x}-\sqrt{x+1}\right)$

Solution: As a composition of inverse trig, root and rational functions, $\arctan \left(-x^{2}+\frac{5}{x}-\sqrt{x+1}\right)$ is continuous on its domain.
Since arctangent is defined on all real numbers, the domain for our functions is given by $x \neq 0$ and $x+1 \geq 0$, Thus, $x \geq-1, x \neq 0$, and the domain is given by $[-1,0) \cup(0,+\infty)$.
(b) $\ln \left(\frac{\sqrt{x+2}}{x}\right)$

Solution: As a combination of logarithmic, root and rational functions, the function is continuous on its domain.
The input in the natural \log has to be positive, so $\frac{\sqrt{x+2}}{x}>0$. Since the square root is always positive, we need the denominator to be positive, so we have $x>0$. In addition, to take square roots we need $x+2 \geq 0$, so $x \geq-2$. But we already need $x>0$, so the domain is $(0,+\infty)$.
(c) $5 x \sqrt{x^{2}+x}$

Solution: Again, the function is contnuous on its domain.
For this we need $x^{2}+x \geq 0$. But $x^{2}+x=x(x+1)$, and for the product to be positive, either both factors need to be positive, or both negative.
Case 1: $x \geq 0$ and $x+1 \geq 0$, so $x \geq 0$.
Case 2: $x \leq 0$ and $x+1 \leq 0$, so $x \leq-1$.
Therefore, the function is defined on $(-\infty,-1] \cup[0,+\infty)$, and it is continuous there as well.
(d) $\frac{\sqrt{x+1}-\sqrt{x-1}}{3 x}$

Solution: Again, the function is contnuous on its domain.
For this we need $x+1 \geq 0, x-1 \geq 0$ and $x \neq 0$. This is the same as

$$
\begin{gathered}
x \geq-1 \\
x \geq 1
\end{gathered}
$$

and also

$$
x \neq 0
$$

For all three conditions to happen, $x \geq 1$, so the domain is $[1,+\infty)$ and the function is continuous on this interval.
(3) In general, 4th degree polynomials don't have to have a root (e.g. $f(x)=x^{4}+1$). Show that $g(x)=4 x^{4}-10 x^{3}+4 x^{2}-6 x-10$ has a root.

Solution: We have $f(0)=-10, f(1)=4-10+4-6-10=-18$, so we cannot use the Intervediate Value Theorem yet. However, $f(-1)=4+10+4+6-10=14$. Since $f(-1)>0, f(0)<0$, by the Intermediae Value Theorem there must be a number c between -1 and 0 such that $g(c)=0$, so there must be a root between -1 and 0 .
(4) Find the following limits:
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x-5}$

Solution: We cannot plug in $x=5$, since the expression is not defined at $x=5$ (division by 0). So we factor the numerator:

$$
\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+3)}{x-5}=\lim _{x \rightarrow 5}(x+3)=8
$$

(b) $\lim _{x \rightarrow 1} \frac{x^{2}-3}{x+5}$

Solution: Since we have a rational function defined at $x=1$, we plug in $x=1$:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3}{x+5}=\frac{1^{2}-3}{1+5}=\frac{-1}{3} .
$$

(c) $\lim _{x \rightarrow 0} \frac{\sqrt{9+x}-3}{x}$

Solution: We cannot plug in $x=0$, since the expression is not defined at $x=0$ (division by 0), and furthermore plugging in $x=0$ gives a limit of the form $\frac{0}{0}$, which we cannot compute. Instead we rationalize the numerator:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{9+x}-3}{x}=\lim _{x \rightarrow 0} \frac{(\sqrt{9+x}-3)(\sqrt{9+x}+3)}{x(\sqrt{9+x}+3)}=\lim _{x \rightarrow 0} \frac{9+x-9}{x(\sqrt{9+x}+3)}= \\
& \lim _{x \rightarrow 0} \frac{1}{\sqrt{9+x}+3}=\frac{1}{\sqrt{9+0}+3}=\frac{1}{6}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \pi} \sin (x+\sin (x))$

Solution: Since $\sin (x)$ is continuous on all of the real line, we can just plug in $x=\pi / 2$:

$$
\lim _{x \rightarrow \pi} \sin (x+\sin (x))=\sin (\pi+\sin (\pi))=\sin (\pi+0)=\sin (\pi)=0
$$

(5) Do the following sequences converge? If so, to what?
(a) $a_{n}=\frac{n}{n^{3}+1}$

Solution: The sequence converges to 0 , since we have higher powers of n in the denominator than in the numerator.
(b) $b_{n}=\frac{n^{3}+5}{n^{2}+3 n+4}$

Solution: The sequence does not converge, since we have smaller powers of n in the denominator than in the numerator.
(c) $c_{n}=\frac{(-3)^{n}}{6^{n}}$

Solution: The sequence converges to 0 , since $\frac{(-3)^{n}}{6^{n}}=\left(\frac{-3}{6}\right)^{n}=\left(\frac{-1}{2}\right)^{n}$, and the sequence $\left\{r^{n}\right\}$ converges to 0 for r in the interval $(-1,1)$.
(d) $d_{n}=\cos (n \pi / 2)$

Solution: The sequence does not converge: its terms are $\{1,0,-1,0,1,0,-1,0, \ldots\}$, and the values do not stabilize to one particular limit in the long run.

