Practice problems review III

Exercise 1: sequences For each of the following sequences, determine if it converges or not. If it does, find the limit.
(1) $a_{n}=\frac{1+x^{2}}{(2 x+1)(3 x+2)}$

Solution: $a_{n}=\frac{1+n^{2}}{(2 n+1)(3 n+2)}=\frac{n^{2}+1}{6 n^{2}+7 n+2}$
Since both numerator and denominator have the same largest power of n (which is n^{2}), the sequence converges to the quotient of the coefficients in front of n^{2}, and $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{6}$.
(2) $b_{n}=\sin \left(\frac{\pi}{2}+\frac{1}{n}\right)$

Solution: The sequence converges.
Since $\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}+\frac{1}{n}\right)=\frac{\pi}{2}+0=\frac{\pi}{2}, \lim _{n \rightarrow \infty} b_{n}=\sin \left(\frac{\pi}{2}\right)=1$.
(3) $c_{n}=\frac{\left(\frac{-3}{2}\right)^{n}}{\left(\frac{4}{5}\right)^{n}}$

Solution: The sequence does not converge.
Since $c_{n}=\frac{\left(\frac{-3}{2}\right)^{n}}{\left(\frac{4}{5}\right)^{n}}=\frac{\frac{(-3)^{n}}{2^{n}}}{\frac{4^{n}}{5^{n}}}=\frac{(-3)^{n}}{2^{n}} \cdot \frac{5^{n}}{4^{n}}=\frac{-15^{n}}{8^{n}}=\left(\frac{-15}{8}\right)^{n}$, and $\frac{-15}{8}<-1$, the sequence does not converge (r^{n} would only converge for $-1<r \leq 1$)

Exercise 2: trig and inverse trig. Evaluate each of the following:
(1) $\frac{d}{d x}(\cos (x))$ at $x=-\frac{\pi}{4}$

Solution: $\frac{d}{d x}(\cos (x))=-\sin (x)$, and $-\sin \left(-\frac{\pi}{4}\right)=-\left(-\frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}$
(2) $\arccos \left(\cos \left(-\frac{\pi}{2}\right)\right)$

Solution: We cannot use the cancellation laws since $-\frac{\pi}{2}$ is not in the range of arccos, which is $[0, \pi]$. Instead, we evaluate step by step:

$$
\arccos \left(\cos \left(-\frac{\pi}{2}\right)\right)=\arccos (0)=\frac{\pi}{2}
$$

(3) $\frac{d}{d x}(x \arctan (x))$ at $x=-1$

Solution: $\frac{d}{d x}(x \arctan (x))=(x)^{\prime} \arctan (x)+x(\arctan (x))^{\prime}=\arctan (x)+\frac{x}{1+x^{2}}$. Then

$$
\arctan (-1)+\frac{-1}{1+(-1)^{2}}=-\frac{\pi}{4}-\frac{1}{2}
$$

Exercise 3: Limits and continuity of functions. Let $f(x)=\ln \left(\frac{2 x+4}{3 x}\right)$. Determine the following:
(1) On what intervals is $f(x)$ continuous?

Solution: As a combination of rational and logarithmic functions, f is continuous on its domain. Due to the log, the domain is given by

$$
\frac{2 x+4}{3 x}>0
$$

Multiplying both sides by $3 / 2$ we get

$$
\begin{gathered}
\frac{x+2}{x}>0 \\
\frac{x}{x}+\frac{2}{x}>0 \\
1+\frac{2}{x}>0 \\
\frac{2}{x}>-1
\end{gathered}
$$

If $x<0$, then we need $2<-x$, so $x<-2$. If $x>0$, then we need $2>-x$, so $x>-2$. In the latter case, we have both $x>0$ and $x>-2$, so $x>0$. Thus, the domain is $(-\infty,-2) \cup(0,+\infty)$.
(2) Find $\lim _{x \rightarrow \infty} f(x)$.

Solution: Since $\lim _{x \rightarrow \infty} \frac{2 x+4}{3 x}=\frac{2}{3}, \lim _{x \rightarrow \infty} \ln \left(\frac{2 x+4}{3 x}\right)=\ln \left(\frac{2}{3}\right)$.
(3) Find $f^{\prime}(x)$. What is the domain of $f^{\prime}(x)$?

Solution: Let $g(x)=\ln (x)$ and $h(x)=\frac{2 x+4}{3 x}$. Then $g^{\prime}(x)=\frac{1}{x}, h^{\prime}(x)=\frac{2(3 x)-(2 x+4) 3}{(3 x)^{2}}=$ $\frac{-12}{9 x^{2}}=-\frac{4}{3 x^{2}}$. Then

$$
f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)=\frac{3 x}{2 x+4} \cdot \frac{-4}{3 x}=\frac{-2}{(x+2) x}
$$

Since the derivative gives the slope of the tangent line at a point $(x, f(x))$ on the graph of $f(x)$, the domain of the derivative is contained in the domain of $f(x)$. Thus, the domain of $f^{\prime}(x)$ is contained in $(-\infty,-2) \cup(0,+\infty)$, and since $\frac{-2}{(x+2) x}$ is defined for all such values, the domain of $f^{\prime}(x)$ is all of $(-\infty,-2) \cup(0,+\infty)$.
(4) Find $\lim _{x \rightarrow \infty} f^{\prime}(x)$.

Solution: $\lim _{x \rightarrow \infty} \frac{-2}{(x+2) x}=0$, since the denominator has larger powers of x.

