Practice problems review I

Exercise 1: domains and ranges; inverse functions

(1) Let $f(x) = \sin(x), g(x) = \arcsin(x)$. What are the domains and ranges of $f, g, f \circ g$ and $g \circ f$?

Solution: The domain for $f(x) = \sin(x)$ is $(-\infty, +\infty)$, the range is [-1, 1]. The domain for $g(x) = \arcsin(x)$ is [-1, 1] and the range is $[-\pi/2, \pi/2]$. Since $(f \circ g)(x) = \sin(\arcsin(x))$, the domain of $f \circ g$ is contained in the domain of $\arcsin(x)$, and since the domain of $\sin(x)$ are all the real numbers, we have no further restriction. So the domain of $f \circ g$ is [-1, 1]. Since $(f \circ g)(x) = \sin(\arcsin(x)) = x$ when $-1 \le x \le 1$, the range is [-1, 1].

Since $(g \circ f)(x) = \arcsin(\sin(x))$, the domain of $g \circ f$ is contained in the domain of $\sin(x)$, as long as the range of $\sin(x)$ is in the domain of $\arcsin(x)$. Since $\sin(x)$ has domain all real numbers, and the range of $\sin(x)$ is [-1, 1] and contained in the domain of $\arcsin(x)$, the domain of $g \circ f$ is all of the domain os $\sin(x)$, that is $(-\infty, +\infty)$. The range of $g \circ f$ is the whole range of $\arcsin(x)$, since the range of $\sin(x)$ is the hole domain of $\arcsin(x)$ (if this is still confusing, it might be helpful to draw a picture of the two compositions and track domains and ranges)

(2) Let $f(x) = x^2$, $g(x) = \sqrt{x+1}$. What are the domains and ranges of $f, g, f \circ g$ and $g \circ f$?

Solution: The domain of $f(x) = x^2$ is $(-\infty, +\infty)$, the range is $[0, \infty)$. The domain of $g(x) = \sqrt{x+1}$ is $[-1, +\infty)$, the range is $[0, +\infty)$ (this is just the function \sqrt{x} moved horizontally 1 to the left, which doesn't affect the range.) $f \circ g(x) = (\sqrt{x+1})^2$, so the domain is $[-1, +\infty)$. Due to this, $(f \circ g)(x) = (\sqrt{x+1})^2 = x+1$ when $x \ge -1$, so the range is $[0, +\infty)$.

 $(g \circ f)(x) = \sqrt{x^2 + 1}$, and since $x^2 + 1 \ge 0$ always, the domain of $g \circ f$ is $(-\infty, +\infty)$. Since $x^2 + 1 \ge 1$, then $\sqrt{x^2 + 1} \ge \sqrt{1}$, so the range of $g \circ f$ is $[1, +\infty)$.

- (3) Let f(x) = x + 2, $g(x) = \sqrt{x+2}$. What are the domains and ranges of $\frac{f}{g}$ and $\frac{g}{f}$? **Solution:** $\frac{f(x)}{g(x)} = \frac{x+2}{\sqrt{x+2}}$, so $\sqrt{x+2} \neq 0$ and $x+2 \geq 0$, so the domain is $(-2, +\infty)$. Given this domain, $\frac{f(x)}{g(x)} = \frac{x+2}{\sqrt{x+2}} = \sqrt{x+2}$ when x > -2, so x+2 > 0 and $\sqrt{x+2} > \sqrt{0}$. Therefore the range is $(0, +\infty)$.
- (4) Let f(x) = e^x, g(x) = ln(x+3). What are the domains and ranges of f ∘ g and g ∘ f?
 Solution: The domain of f(x) is (-∞, +∞), the range is (0, +∞). The Domain od g(x) is (-3, +∞), the range is (-∞, +∞) (this is just the function ln(x) moved 3 to the left, so the range doesn't change).

 $(f \circ g)(x) = e^{\ln(x+3)}$, so the domain is $(-3, +\infty)$. Given this domain, $(f \circ g)(x) = e^{\ln(x+3)} = x+3$ when x > -3, so the range is $(0, +\infty)$

 $(g \circ f)(x) = \ln(e^x + 3)$, so the domain is $(-\infty, +\infty)$ because $e^x + 3 > 3$ for any x. Then $\ln(e^x + 3) \ge \ln(3)$ so the range is $(\ln(3), +\infty)$. **Exercise 2: logarithm and exponential equations.** Solve for *x*:

(1) $\ln(x+2) + \ln(x-2) = \ln(6)$

Solution: First, the equation makes sense when both x + 2 > 0 and x - 2 > 0, so x > 2. Then

$$\ln(x+2) + \ln(x-2) = \ln(6)$$
$$\ln[(x+2)(x-2)] = \ln(6)$$
$$\ln(x^2 - 4) = \ln(6)$$

Raising e to the both sides, we have

$$e^{\ln(x^2-4)} = e^{\ln(6)}$$

 $x^2 - 4 = 6$
 $x^2 = 10$
 $x = \pm\sqrt{10}.$

Since $-\sqrt{10} \approx -3.16 < -2$, it doesn't satisfy the conditions we have started with, so the only solution is $x = \sqrt{10}$.

(2)
$$\ln(x+3) - \ln(x-3) = \ln(5)$$

Solution: First, the equation makes sense when both x + 3 > 0 and x - 3 > 0, so x > 3. Then

$$\ln(x+3) - \ln(x-3) = \ln(5)$$
$$\ln\frac{x+3}{x-3} = \ln(5)$$

Raising e to the both sides, we have

$$e^{\ln \frac{x+3}{x-3}} = e^{\ln(5)}$$
$$\frac{x+3}{x-3} = 5$$
$$x+3 = 5(x-3)$$
$$x+3 = 5x - 15$$
$$5x - x = 3 + 15$$
$$4x = 18$$
$$x = 4.5$$

Since 4.5 > 3, x = 4.5 is a solution.

(3) $2^{3x+1} = 4^x$

•

Solution: The equation is defined for any real x. We can take \log_2 of both sides:

$$\log_2(2^{3x+1}) = \log_2(4^x)$$
$$3x + 1 = x \log_2(4)$$
$$3x + 1 = 2x$$
$$x = -1$$

(4) $2^{e^x} = e^{2^x}$

Solution: The equation is defined for any real x. We can take \log_2 of both sides again:

$$\log_2(2^{e^x}) = \log_2(e^{2^x})$$
$$e^x = 2^x \log_2(e)$$

Now we can take ln of both sides:

$$\ln(e^{x}) = \ln(2^{x} \log_{2}(e))$$

$$x = \ln(2^{x}) + \ln(\log_{2}(e))$$

$$x = x \ln(2) + \ln(\log_{2}(e))$$

$$x - x \ln(2) = \ln(\log_{2}(e))$$

$$x(1 - \ln(2)) = \ln(\log_{2}(e))$$

$$x = \frac{\ln(\log_{2}(e))}{1 - \ln(2)}$$

is our solution, since $1 - \ln(2) \neq 0$.

Exercise 3: library of functions. Consider the following classes of functions: linear, power, polynomial, rational, algebraic. For each of the following functions, write down which classes it belongs to and which classes it doesn't belong to (all five classes should be mentioned).

- (1) f(x) = 1 is linear, power $(1 = x^0)$, polynomial, rational and algebraic (since it is already linear)
- (2) $g(x) = x^2 + 1$ is polynomial, rational and algebraic. It is not power or linear.
- (3) $h(x) = \sqrt{x^3}$ is algebraic, power $(\sqrt{x^3} = x^{3/2})$. It is not linear, polynomial or rational.
- (4) $k(x) = \frac{x+1}{x+1}$ is rational and algebraic. It is not linear, power or polynomial since it is not defined at x = -1.
- (5) $f(x) = x^{3\pi}$ is power. It is not linear, polynomial, rational or algebraic.

Exercise 4: Let f(x) be a function with domain [-2,3] and range [0,8]. What are the domains and ranges of the following functions?

(1)
$$-f(-x-1)$$

Solution:

$$-2 < -x - 1 < 3$$

 \mathbf{SO}

$$-1 \le -x \le 4$$
$$-4 \le x \le 1,$$

and therefore the domain is [-4, 1]. Since

$$0 \le f(-x-1) \le 8,$$

 $-8 \le -f(-x-1) \le 0,$

so the range is [-8, 0].

(2) 3f(2x+1)Solution:

 \mathbf{SO}

$$-2 \le 2x + 1 \le 3$$

$$-3 \le 2x \le 2$$
$$-1.5 \le x \le 1,$$

and therefore the domain is [-1.5, 1]. Since

$$0 \le f(2x+1) \le 8,$$

$$0 \le 3f(2x+1) \le 24,$$

so the range is [0, 24].

(3) $4f^{-1}(-x) + 1$

Solution:

We are dealing with f^{-1} not f. Since f^{-1} has domain [0, 8] and range [-2, 3],

$$0 \le -x \le 8$$
$$-8 \le x \le 0$$

so the domain is [-8, 0]. Since

$$-2 \le f^{-1}(-x) \le 3$$

-8 \le 4f^{-1}(-x) \le 12
-7 \le 4f^{-1}(-x) + 1 \le 13

so the range is [-7, 13]

Exercise 5: True/False Are the following statements true or false?

(1) $\sin(x)$ is an even function: false (look at the graph)

- (2) $\sin(x)$ is an odd function: true(look at the graph)
- (3) $\cos(x)$ is an even function: true
- (4) $\cos(x)$ is an odd function: false
- (5) e^x is an increasing function: true
- (6) $\ln(x)$ is a decreasing function: false
- (7) The sequence $a_n = \frac{2n+1}{3n}$ is bounded by 2/3: false
- (8) The function $\frac{3x^2}{5x-1}$ is even : false
- (9) The function $(x-5)^2 + 5$ is one-to-one on the interval [-1,5]: true
- (10) The function $(x-5)^2 + 5$ is one-to-one on the interval [0,7]: false , plugging in x = 6 and x = 4 gives the same number