Practice problems review I

Exercise 1: domains and ranges; inverse functions

(1) Let $f(x)=\sin (x), g(x)=\arcsin (x)$. What are the domains and ranges of $f, g, f \circ g$ and $g \circ f$?

Solution: The domain for $f(x)=\sin (x)$ is $(-\infty,+\infty)$, the range is $[-1,1]$. The domain for $g(x)=\arcsin (x)$ is $[-1,1]$ and the range is $[-\pi / 2, \pi / 2]$. Since $(f \circ g)(x)=$ $\sin (\arcsin (x))$, the domain of $f \circ g$ is contained in the domain of $\arcsin (x)$, and since the domain of $\sin (x)$ are all the real numbers, we have no further restriction. So the domain of $f \circ g$ is $[-1,1]$. Since $(f \circ g)(x)=\sin (\arcsin (x))=x$ when $-1 \leq x \leq 1$, the range is $[-1,1]$.

Since $(g \circ f)(x)=\arcsin (\sin (x))$, the domain of $g \circ f$ is contained in the domain of $\sin (x)$, as long as the range of $\sin (x)$ is in the domain of $\arcsin (x)$. Since $\sin (x)$ has domain all real numbers, and the range of $\sin (x)$ is $[-1,1]$ and contained in the domain of $\arcsin (x)$, the domain of $g \circ f$ is all of the domain os $\sin (x)$, that is $(-\infty,+\infty)$. The range of $g \circ f$ is the whole range of $\arcsin (x)$, since the range of $\sin (x)$ is the hole domain of $\arcsin (x)$ (if this is still confusing, it might be helpful to draw a picture of the two compositions and track domains and ranges)
(2) Let $f(x)=x^{2}, g(x)=\sqrt{x+1}$. What are the domains and ranges of $f, g, f \circ g$ and $g \circ f$?

Solution: The domain of $f(x)=x^{2}$ is $(-\infty,+\infty)$, the range is $[0, \infty)$. The domain of $g(x)=\sqrt{x+1}$ is $[-1,+\infty)$, the range is $[0,+\infty)$ (this is just the function \sqrt{x} moved horizontally 1 to the left, which doesn't affect the range.) $f \circ g(x)=(\sqrt{x+1})^{2}$, so the domain is $[-1,+\infty)$. Due to this, $(f \circ g)(x)=(\sqrt{x+1})^{2}=x+1$ when $x \geq-1$, so the range is $[0,+\infty)$.
$(g \circ f)(x)=\sqrt{x^{2}+1}$, and since $x^{2}+1 \geq 0$ always, the domain of $g \circ f$ is $(-\infty,+\infty)$. Since $x^{2}+1 \geq 1$, then $\sqrt{x^{2}+1} \geq \sqrt{1}$, so the range of $g \circ f$ is $[1,+\infty)$.
(3) Let $f(x)=x+2, g(x)=\sqrt{x+2}$. What are the domains and ranges of $\frac{f}{g}$ and $\frac{g}{f}$?

Solution: $\frac{f(x)}{g(x)}=\frac{x+2}{\sqrt{x+2}}$, so $\sqrt{x+2} \neq 0$ and $x+2 \geq 0$, so the domain is $(-2,+\infty)$. Given this domain, $\frac{f(x)}{g(x)}=\frac{x+2}{\sqrt{x+2}}=\sqrt{x+2}$ when $x>-2$, so $x+2>0$ and $\sqrt{x+2}>$ $\sqrt{0}$. Therefore the range is $(0,+\infty)$.
(4) Let $f(x)=e^{x}, g(x)=\ln (x+3)$. What are the domains and ranges of $f \circ g$ and $g \circ f$?

Solution: The domain of $f(x)$ is $(-\infty,+\infty)$, the range is $(0,+\infty)$. The Domain od $g(x)$ is $(-3,+\infty)$, the range is $(-\infty,+\infty)$ (this is just the function $\ln (x)$ moved 3 to the left, so the range doesn't change).
$(f \circ g)(x)=e^{\ln (x+3)}$, so the domain is $(-3,+\infty)$. Given this domain, $(f \circ g)(x)=$ $e^{\ln (x+3)}=x+3$ when $x>-3$, so the range is $(0,+\infty)$
$(g \circ f)(x)=\ln \left(e^{x}+3\right)$, so the domain is $(-\infty,+\infty)$ because $e^{x}+3>3$ for any x. Then $\ln \left(e^{x}+3\right) \geq \ln (3)$ so the range is $(\ln (3),+\infty)$.

Exercise 2: logarithm and exponential equations. Solve for x :
(1) $\ln (x+2)+\ln (x-2)=\ln (6)$

Solution: First, the equation makes sense when both $x+2>0$ and $x-2>0$, so $x>2$. Then

$$
\begin{gathered}
\ln (x+2)+\ln (x-2)=\ln (6) \\
\ln [(x+2)(x-2)]=\ln (6) \\
\ln \left(x^{2}-4\right)=\ln (6)
\end{gathered}
$$

Raising e to the both sides, we have

$$
\begin{gathered}
e^{\ln \left(x^{2}-4\right)}=e^{\ln (6)} \\
x^{2}-4=6 \\
x^{2}=10 \\
x= \pm \sqrt{10}
\end{gathered}
$$

Since $-\sqrt{10} \approx-3.16<-2$, it doesn't satisfy the conditions we have started with, so the only solution is $x=\sqrt{10}$.
(2) $\ln (x+3)-\ln (x-3)=\ln (5)$

Solution: First, the equation makes sense when both $x+3>0$ and $x-3>0$, so $x>3$. Then

$$
\begin{gathered}
\ln (x+3)-\ln (x-3)=\ln (5) \\
\ln \frac{x+3}{x-3}=\ln (5)
\end{gathered}
$$

Raising e to the both sides, we have

$$
\begin{gathered}
e^{\ln \frac{x+3}{x-3}}=e^{\ln (5)} \\
\frac{x+3}{x-3}=5 \\
x+3=5(x-3) \\
x+3=5 x-15 \\
5 x-x=3+15 \\
4 x=18 \\
x=4.5
\end{gathered}
$$

Since $4.5>3, x=4.5$ is a solution.
(3) $2^{3 x+1}=4^{x}$

Solution: The equation is defined for any real x. We can take $\log _{2}$ of both sides:

$$
\begin{gathered}
\log _{2}\left(2^{3 x+1}\right)=\log _{2}\left(4^{x}\right) \\
3 x+1=x \log _{2}(4) \\
3 x+1=2 x \\
x=-1
\end{gathered}
$$

(4) $2^{e^{x}}=e^{2^{x}}$

Solution: The equation is defined for any real x. We can take $\log _{2}$ of both sides again:

$$
\begin{gathered}
\log _{2}\left(2^{e^{x}}\right)=\log _{2}\left(e^{2^{x}}\right) \\
e^{x}=2^{x} \log _{2}(e)
\end{gathered}
$$

Now we can take \ln of both sides:

$$
\begin{gathered}
\ln \left(e^{x}\right)=\ln \left(2^{x} \log _{2}(e)\right) \\
x=\ln \left(2^{x}\right)+\ln \left(\log _{2}(e)\right) \\
x=x \ln (2)+\ln \left(\log _{2}(e)\right) \\
x-x \ln (2)=\ln \left(\log _{2}(e)\right) \\
x(1-\ln (2))=\ln \left(\log _{2}(e)\right) \\
x=\frac{\ln \left(\log _{2}(e)\right)}{1-\ln (2)}
\end{gathered}
$$

is our solution, since $1-\ln (2) \neq 0$.
Exercise 3: library of functions. Consider the following classes of functions: linear, power, polynomial, rational, algebraic. For each of the following functions, write down which classes it belongs to and which classes it doesn't belong to (all five classes should be mentioned).
(1) $f(x)=1$ is linear, power $\left(1=x^{0}\right)$, polynomial, rational and algebraic (since it is already linear)
(2) $g(x)=x^{2}+1$ is polynomial, rational and algebraic. It is not power or linear.
(3) $h(x)=\sqrt{x^{3}}$ is algebraic, power $\left(\sqrt{x^{3}}=x^{3 / 2}\right)$. It is not linear, polynomial or rational.
(4) $k(x)=\frac{x+1}{x+1}$ is rational and algebraic. It is not linear, power or polynomial since it is not defined at $x=-1$.
(5) $f(x)=x^{3 \pi}$ is power. It is not linear, polynomial, rational or algebraic.

Exercise 4: Let $f(x)$ be a function with domain $[-2,3]$ and range $[0,8]$. What are the domains and ranges of the following functions?
(1) $-f(-x-1)$

Solution:

$$
-2 \leq-x-1 \leq 3
$$

so

$$
\begin{aligned}
& -1 \leq-x \leq 4 \\
& -4 \leq x \leq 1
\end{aligned}
$$

and therefore the domain is $[-4,1]$. Since

$$
\begin{aligned}
0 & \leq f(-x-1) \leq 8 \\
-8 & \leq-f(-x-1) \leq 0
\end{aligned}
$$

so the range is $[-8,0]$.
(2) $3 f(2 x+1)$

Solution:

$$
-2 \leq 2 x+1 \leq 3
$$

so

$$
\begin{gathered}
-3 \leq 2 x \leq 2 \\
-1.5 \leq x \leq 1
\end{gathered}
$$

and therefore the domain is $[-1.5,1]$. Since

$$
\begin{gathered}
0 \leq f(2 x+1) \leq 8 \\
0 \leq 3 f(2 x+1) \leq 24
\end{gathered}
$$

so the range is $[0,24]$.
(3) $4 f^{-1}(-x)+1$

Solution:
We are dealing with f^{-1} not f. Since f^{-1} has domain $[0,8]$ and range $[-2,3]$,

$$
\begin{aligned}
& 0 \leq-x \leq 8 \\
& -8 \leq x \leq 0
\end{aligned}
$$

so the domain is $[-8,0]$. Since

$$
\begin{gathered}
-2 \leq f^{-1}(-x) \leq 3 \\
-8 \leq 4 f^{-1}(-x) \leq 12 \\
-7 \leq 4 f^{-1}(-x)+1 \leq 13
\end{gathered}
$$

so the range is $[-7,13]$
Exercise 5: True/False Are the following statements true or false?
(1) $\sin (x)$ is an even function: false (look at the graph)
(2) $\sin (x)$ is an odd function: true(look at the graph)
(3) $\cos (x)$ is an even function: true
(4) $\cos (x)$ is an odd function: false
(5) e^{x} is an increasing function: true
(6) $\ln (x)$ is a decreasing function: false
(7) The sequence $a_{n}=\frac{2 n+1}{3 n}$ is bounded by $2 / 3$: false
(8) The function $\frac{3 x^{2}}{5 x-1}$ is even : false
(9) The function $(x-5)^{2}+5$ is one-to-one on the interval $[-1,5]$: true
(10) The function $(x-5)^{2}+5$ is one-to-one on the interval [0,7$]$: false , plugging in $x=6$ and $x=4$ gives the same number

