PRACTICE PROBLEMS

(1) Find the vertical and horizontal asymptotes of the following functions: $r^2 = r^2 - \epsilon$

(a)
$$f(x) = \frac{x^2 - x - 6}{x^2 - x - 20}$$

(b) $g(x) = \frac{x + 1}{(x + 3)(x + 5)}$
(c) $h(x) = \frac{(x + 1)^2}{x^2 + 4x + 3}$

(2) On what intervals are the following functions continuous?

(a)
$$\arctan\left(-x^2 + \frac{5}{x} - \sqrt{x+1}\right)$$

(b) $\ln\left(\frac{\sqrt{x+2}}{x}\right)$
(c) $5x\sqrt{x^2 + x}$
(d) $\frac{\sqrt{x+1} - \sqrt{x-1}}{3x}$

- (3) In general, 4th degree polynomials don't have to have a root (e.g. $f(x) = x^4 + 1$). Show that $g(x) = 4x^4 - 10x^3 + 4x^2 - 6x - 10$ has a root.
- (4) Find the following limits:

(a)
$$\lim_{x \to 5} \frac{x^2 - 2x - 15}{x - 5}$$

(b) $\lim_{x \to 1} \frac{x^2 - 3}{x + 5}$
(c) $\lim_{x \to 0} \frac{\sqrt{9 + x} - 3}{x}$
(d) $\lim_{x \to \pi} \sin(x + \sin(x))$

(5) Do the following sequences converge? If so, to what?

(a)
$$a_n = \frac{n}{n^3 + 1}$$

(b) $b_n = \frac{n^3 + 5}{n^2 + 3n + 4}$
(c) $c_n = \frac{(-3)^n}{6^n}$
(d) $d_n = \cos(n\pi/2)$