PRACTICE PROBLEMS

(1) Find the vertical and horizontal asymptotes of the following functions:
(a) $f(x)=\frac{x^{2}-x-6}{x^{2}-x-20}$
(b) $g(x)=\frac{x+1}{(x+3)(x+5)}$
(c) $h(x)=\frac{(x+1)^{2}}{x^{2}+4 x+3}$
(2) On what intervals are the following functions continuous?
(a) $\arctan \left(-x^{2}+\frac{5}{x}-\sqrt{x+1}\right)$
(b) $\ln \left(\frac{\sqrt{x+2}}{x}\right)$
(c) $5 x \sqrt{x^{2}+x}$
(d) $\frac{\sqrt{x+1}-\sqrt{x-1}}{3 x}$
(3) In general, 4th degree polynomials don't have to have a root (e.g. $f(x)=x^{4}+1$). Show that $g(x)=4 x^{4}-10 x^{3}+4 x^{2}-6 x-10$ has a root.
(4) Find the following limits:
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x-5}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-3}{x+5}$
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{9+x}-3}{x}$
(d) $\lim _{x \rightarrow \pi} \sin (x+\sin (x))$
(5) Do the following sequences converge? If so, to what?
(a) $a_{n}=\frac{n}{n^{3}+1}$
(b) $b_{n}=\frac{n^{3}+5}{n^{2}+3 n+4}$
(c) $c_{n}=\frac{(-3)^{n}}{6^{n}}$
(d) $d_{n}=\cos (n \pi / 2)$

