Math 1
 2nd Midterm

October 20, 2016

Name (in block capital letters):

Instructor (tick one box): \quad Section 1: M. Musty (10:10)
Section 2: E. Sullivan (11:30)
Section 3: A. Babei (12:50)
Section 4: M. Dennis (2:10)

Instructions: You are not allowed to provide or receive help of any kind (closed book examination). However, you may ask the instructor for clarification on problems.

1. Wait for signal to begin.
2. Write your name in the space provided, and tick one box to indicate which section of the course you belong to.
3. Calculators, computers, cell phones, or other computing devices are not allowed. In consideration of other students, please turn off cell phones or other electronic devices which may be disruptive.
4. Unless otherwise stated, you must justify your solutions to receive full credit. Work that is illegible may not be graded. Work that is scratched out will not be graded.

Problem	Score	Possible
1		10
2		8
3		11
4		8
5		8
6		10
7		71
8		8
Total		

1. (10 points) Which of the following statements are always true? Write "T" for true and "F" for false. Your computations will not be graded on this problem.
(a)

$$
\sin (3 \pi / 4)=\sqrt{2} / 2
$$

(b)
 $\arcsin (\sqrt{2} / 2)=3 \pi / 4$.
(c)

$\lim _{n \rightarrow \infty} \frac{5 n}{12+10 n}=\frac{1}{2}$.
(d)

$\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=0$.
(e)

Rational functions are continuous on $(-\infty, \infty)$.

If $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(g)

If $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(h)

The function $f(x)=\frac{(x-1)(x-2)}{x-1}$ has an infinite discontinuity at 1 .

A function can have at most one horizontal asymptote.
(j)

If a is not in the domain of f, then $\lim _{x \rightarrow a} f(x)$ does not exist.
2. (8 points) Find the following values. Show your work.
(a) $\cos \left(\frac{\pi}{6}\right)$

Solution:

We look at the following triangle, which we obtain by splitting an equilateral triangle of side length 2 in half:

Then $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
(b) $\sin \left(\frac{7 \pi}{6}\right)$

Solution:

Since $\pi<\frac{7 \pi}{6}<\frac{9 \pi}{6}=\frac{3 \pi}{2}$, the angle $\frac{7 \pi}{6}$ is in the third quadrant, so the value of $\sin \left(\frac{7 \pi}{6}\right)$ given by the y-coordinate of the angle will be negative.

The part of the angle in the third quadrant is $\frac{7 \pi}{6}-\pi=\frac{\pi}{6}$. Thus, the y-coordinate of the point representing the angle $\frac{7 \pi}{6}$ is given by the negative of the opposite side of the angle $\frac{\pi}{6}$ in the triangle depicted above. This is $-\sin \left(\frac{\pi}{6}\right)=-\frac{1}{2}$.
(c) $\arcsin (\sin (\pi))$

Solution:

We cannot use the cancellation laws since π is not in the range $[-\pi / 2, \pi / 2]$ of $\arcsin (x)$. Instead,

$$
\arcsin (\sin (\pi))=\arcsin (0)=0
$$

since $\sin (\pi)=0$ and the only angle θ in the interval $[-\pi / 2, \pi / 2]$ with $\sin (\theta)=0$ is $\theta=0$.
3. (11 points) For each of the following inverse trigonometry problems, draw the corresponding triangles, and evaluate the expression. Show all your work.
(a)

$$
\cos \left(\arcsin \left(\frac{5}{6}\right)\right)
$$

Solution:

So

$$
\cos \left(\arcsin \left(\frac{5}{6}\right)\right)=\frac{\sqrt{11}}{6}
$$

(b) Simplify the following expression so that in has no trigonometric functions.

$$
\tan \left(\arccos \left(\frac{x}{x+1}\right)\right)
$$

Solution:

Let o denote the opposite side of the triangle. Then

$$
x^{2}+o^{2}=(x+1)^{2},
$$

and so

$$
o^{2}=(x+1)^{2}-x^{2} .
$$

Thus

$$
\begin{aligned}
o & =\sqrt{(x+1)^{2}-x^{2}} \\
& =\sqrt{\left(x^{2}+2 x+1\right)-x^{2}} \\
& =\sqrt{2 x+1}
\end{aligned}
$$

So

$$
\tan \left(\arccos \left(\frac{x}{\sqrt{x+1}}\right)\right)=\frac{\sqrt{2 x+1}}{x}
$$

4. (8 points) Evaluate the limit, if it exists. Show all your work.
(a)

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{(x-2)}
$$

Solution: We factor the top to get

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)}
$$

Now

$$
x+3=\frac{(x-2)(x+3)}{(x-2)}
$$

for all x except 2 . Thus

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{(x-2)}=\lim _{x \rightarrow 2}(x+3)=5
$$

(b)

$$
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}
$$

Solution:

$$
\frac{2-\sqrt{x}}{4 x-x^{2}}=\frac{2-\sqrt{x}}{4 x-x^{2}} \cdot \frac{2+\sqrt{x}}{2+\sqrt{x}}=\frac{4-x}{\left(4 x-x^{2}\right)(2+\sqrt{x})}=\frac{4-x}{x(4-x)(2+\sqrt{x})}
$$

Since

$$
\frac{4-x}{x(4-x)(2+\sqrt{x})}=\frac{1}{x(2+\sqrt{x})}
$$

for all x except 4, we have

$$
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}=\lim _{x \rightarrow 4} \frac{1}{x(2+\sqrt{x})}=\frac{1}{4(2+\sqrt{4})}=\frac{1}{4(2+2)}=\frac{1}{4(4)}=\frac{1}{16}
$$

5. (8 points)
(a) Let f be a function such that $2 x+3 \leq f(x) \leq\left(\frac{x}{3}+2\right)^{2}$ when $0 \leq x \leq 5$. Evaluate $\lim _{x \rightarrow 3} f(x)$.
When I take the limits of each side, I get that

$$
\lim _{x \rightarrow 3} 2 x+3=9=\lim _{x \rightarrow 3}\left(\frac{x}{3}+2\right)^{2}
$$

Thus by the Squeeze Theorem, we have that $\lim _{x \rightarrow 3} f(x)=9$.
(b) Evaluate $\lim _{x \rightarrow 1}(x-1)^{2} \sin \left(\frac{1}{1-x}\right)$.

First note that $-1 \leq \sin \left(\frac{1}{1-x}\right) \leq 1$. If we multiply all sides by $(x-1)^{2}$, we get $-(x-1)^{2} \leq(x-1)^{2} \sin \left(\frac{1}{1-x}\right) \leq(x-1)^{2}$. But when I take the limits of each side, I get

$$
\lim _{x \rightarrow 1}-(x-1)^{2}=0=\lim _{x \rightarrow 1}(x-1)^{2}
$$

Thus by the Squeeze Theorem, we have $\lim _{x \rightarrow 1}(x-1)^{2} \sin \left(\frac{1}{1-x}\right)=0$.
6. (8 points) For the following functions, find all vertical and horizontal asymptotes. If there are no vertical or horizontal asymptotes, right NONE.
(a) $f(x)=\frac{x^{2}-4}{(2 x+3)(x-1)}$.

Horizontal Asymptotes: There is a horizontal asymptote at $y=\frac{1}{2}$.

Vertical Asymptotes: There are vertical asymptotes at $x=-\frac{3}{2}$ and $x=1$.
(b) $g(x)=\frac{x^{2}-9}{x+3}$.

Horizontal Asymptotes: NONE

Vertical Asymptotes: NONE
(c) $h(x)=\arctan (4 x)$.

Horizontal Asymptotes: There are horizontal asymptotes at $\frac{-\pi}{2}$ and $\frac{\pi}{2}$.

Vertical Asymptotes: NONE
7. (8 points) For each of the sequences below, determine if the sequence converges or not. If it converges, find the limit. Justify your answers.
(a) $a_{n}=\frac{(n-1)\left(n^{2}+1\right)}{(3 n-1)(2 n+5)}$

Solution:

Expading the factors, have that

$$
a_{n}=\frac{(n-1)\left(n^{2}+1\right)}{(3 n-1)(2 n+5)}=\frac{n^{3}+n-n^{2}-1}{6 n^{2}+15 n-2 n-5}=\frac{n^{3}-n^{2}+n-1}{6 n^{2}+13 n-5} .
$$

Dividing both numerator and denominator by n^{2} (since we are looking for limits as $n \rightarrow \infty$ where n is large, we do not worry about $n=0$) we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n-1+\frac{1}{n}-\frac{1}{n^{2}}}{6+\frac{13}{n}-\frac{5}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n-1}{6}=\infty
$$

The second equality follows since in the long run $\frac{1}{n} \rightarrow 0, \frac{1}{n^{2}} \rightarrow 0, \frac{13}{n} \rightarrow 0$ and $\frac{5}{n^{2}} \rightarrow 0$. The third equality follows since in the long run the numerator will grow much larger than the denominator.
Thus, the sequence does not converge.
(b) $b_{n}=e^{-\left(n^{2}\right)}$

Solution:

Since

$$
b_{n}=e^{-n^{2}}=\left(\frac{1}{e}\right)^{n^{2}}
$$

$\left(\frac{1}{e}\right)^{n^{2}}$ gets very small as n gets very large, and $\lim _{n \rightarrow \infty} b_{n}=0$.
(c) $c_{n}=\frac{(-2)^{n}}{3^{n}}$

Solution:

Since $c_{n}=\frac{(-2)^{n}}{3^{n}}=\left(\frac{-2}{3}\right)^{n}$, and $-1<-\frac{2}{3} \leq 1$, the sequence converges to 0 and

$$
\lim _{n \rightarrow \infty} c_{n}=0
$$

8. (10 points) Let f be defined by the graph below.

(a) Compute $\lim _{x \rightarrow 0^{-}} f(x)$.

Solution:

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

(b) Find the interval(s) where f is continuous.

Solution:
f is continuous on $(-\infty, 0),(0,1)$, and $(1, \infty)$.
(c) Find the discontinuities of f. For each discontinuity of f, determine its type (removable, jump, or infinite).

Solution:

f has an infinite discontinuity at 0 and a jump discontinuity at 1.
(d) Compute

$$
\lim _{x \rightarrow \infty} f\left(\frac{2 x^{2}+5}{x^{2}+1}\right)
$$

Solution:

Since f is continuous at $\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{x^{2}+1}=2$, we get that

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f\left(\frac{2 x^{2}+5}{x^{2}+1}\right) & =f\left(\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{x^{2}+1}\right) \\
& =f(2)=1
\end{aligned}
$$

