Math 1
 2nd Midterm

October 20, 2016

Name (in block capital letters):

Instructor (tick one box): \quad Section 1: M. Musty (10:10)
Section 2: E. Sullivan (11:30)
Section 3: A. Babei (12:50)
Section 4: M. Dennis (2:10)

Instructions: You are not allowed to provide or receive help of any kind (closed book examination). However, you may ask the instructor for clarification on problems.

1. Wait for signal to begin.
2. Write your name in the space provided, and tick one box to indicate which section of the course you belong to.
3. Calculators, computers, cell phones, or other computing devices are not allowed. In consideration of other students, please turn off cell phones or other electronic devices which may be disruptive.
4. Unless otherwise stated, you must justify your solutions to receive full credit. Work that is illegible may not be graded. Work that is scratched out will not be graded.

Problem	Score	Possible
1		10
2		8
3		11
4		8
5		8
6		10
7		71
8		8
Total		

1. (10 points) Which of the following statements are always true? Write "T" for true and "F" for false. Your computations will not be graded on this problem.
(a)

$$
\sin (3 \pi / 4)=\sqrt{2} / 2
$$

(b)
 $\arcsin (\sqrt{2} / 2)=3 \pi / 4$.
(c)

$\lim _{n \rightarrow \infty} \frac{5 n}{12+10 n}=\frac{1}{2}$.
(d)

$\lim _{n \rightarrow \infty} \cos \left(\frac{1}{n}\right)=0$.
(e)
 Rational functions are continuous on $(-\infty, \infty)$.

If $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(g)

If $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(h)

The function $f(x)=\frac{(x-1)(x-2)}{x-1}$ has an infinite discontinuity at 1 .

A function can have at most one horizontal asymptote.
(j)

If a is not in the domain of f, then $\lim _{x \rightarrow a} f(x)$ does not exist.
2. (8 points) Find the following values. Show your work.
(a) $\cos \left(\frac{\pi}{6}\right)$
(b) $\sin \left(\frac{7 \pi}{6}\right)$
(c) $\arcsin (\sin (\pi))$
3. (11 points) For each of the following inverse trigonometry problems, draw the corresponding triangles, and evaluate the expression. Show all your work.
(a)

$$
\cos \left(\arcsin \left(\frac{5}{6}\right)\right)
$$

(b) Simplify the following expression so that in has no trigonometric functions.

$$
\tan \left(\arccos \left(\frac{x}{x+1}\right)\right)
$$

4. (8 points) Evaluate the limit, if it exists. Show all your work.
(a)

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{(x-2)}
$$

(b)

$$
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}
$$

5. (8 points)
(a) Let f be a function such that $2 x+3 \leq f(x) \leq\left(\frac{x}{3}+2\right)^{2}$ when $0 \leq x \leq 5$. Evaluate $\lim _{x \rightarrow 3} f(x)$.
(b) Evaluate $\lim _{x \rightarrow 1}(x-1)^{2} \sin \left(\frac{1}{1-x}\right)$.
6. (8 points) For the following functions, find all vertical and horizontal asymptotes. If there are no vertical or horizontal asymptotes, right NONE.
(a) $f(x)=\frac{x^{2}-4}{(2 x+3)(x-1)}$.

Horizontal Asymptotes:

Vertical Asymptotes:
(b) $g(x)=\frac{x^{2}-9}{x+3}$.

Horizontal Asymptotes:

Vertical Asymptotes:
(c) $h(x)=\arctan (4 x)$.

Horizontal Asymptotes:

Vertical Asymptotes:
7. (8 points) For each of the sequences below, determine if the sequence converges or not. If it converges, find the limit. Justify your answers.
(a) $a_{n}=\frac{(n-1)\left(n^{2}+1\right)}{(3 n-1)(2 n+5)}$
(b) $b_{n}=e^{-\left(n^{2}\right)}$
(c) $c_{n}=\frac{(-2)^{n}}{3^{n}}$
8. (10 points) Let f be defined by the graph below.

(a) Compute $\lim _{x \rightarrow 0^{-}} f(x)$.
(b) Find the interval(s) where f is continuous.
(c) Find the discontinuities of f. For each discontinuity of f, determine its type (removable, jump, or infinite).
(d) Compute

$$
\lim _{x \rightarrow \infty} f\left(\frac{2 x^{2}+5}{x^{2}+1}\right)
$$

