
1. Quiz (10 mins)

2. Newton’s method (15 mins)

How does the calculator find the roots, if it doesn’t employ formulas? Let’s look at the
following picture: we have some polynomial, and we want to approximate the root. We start
with an approximation x0. How may we use tangent lines to get better approximations?
(Draw picture)

Let’s explain algebraically what happened here. We started with an approximation x0,
and we drew the tangent line at (x0, f(x0). Its equation is y − f(x0) = f ′(x0)(x− x0). The
x-intercept is given by (x1, 0), and we can solve for x1 if f ′(x0) 6= 0 given the equation of the
line:

0− f(x0) = f ′(x0)(x1 − x0)

x1 − x0 = − f(x0)

f ′(x0)

x1 = x0 −
f(x0)

f ′(x0)

But we saw that we were able to get a better approximation by doing the same again.
Given the new approximation, x1, the point on the graph is (x1, f(x1)), then going through
the same process again we get a new approximation

x2 = x1 −
f(x1)

f ′(x1)

In general, if we keep iterating, given an approximation xn we get

xn+1 = xn −
f(xn)

f ′(xn)
.

Let’s practice! Exercise: Estimate 6
√

2 correct to eight decimal places.

Solution: 6
√

2 is a solution of the equation x6− 2. So let f(x) = x6− 2, then f ′(x) = 6x5.

We know that 6
√

2 is somewhere between 1 and 2, so let the first approximation be x0 =
1. Since f ′(1) = 6 is not close to 0, we may proceed. Then the general formula for the
approximations will be

xn+1 = xn −
x2n − 2

2xn
So

x1 = 1− 16 − 2

6 · 15
= 1− −1

6
=

7

6
≈ 1.16666667

x2 =
7

6
−

(7
6
)6 − 2

6 · (7
6
)5
≈ 1.12644368

If we keep doing so,
x3 ≈ 1.12249707

x4 ≈ 1.12246205

x5 ≈ 1.22246205



Since x4 and x5 agree to eight decimal places, a good approximation should be
6
√

2 ≈ 1.22246205.

(1.20)

3. Linear approximation (rest of time)

Let’s get back to Newton’s method: in the background of our pctures and calculations
was the fact that for values of x close to a, the graph of f(x) was looking like the tangent
line at (a, f(a)), i.e. the tangent line was a good approximation for f(x). (Draw picture)

The point-slope formula for a line is y−y0 = m(x−x0). In this case, we want the tangent
line at (a, f(a)), so the slope of the tangent line is the derivative f ′(a). So the tangent line
has the equation y − f(a) = f ′(a)(x− a) . Since we assume that the tangent line is a good
approximation for the graph of f(x), we will call

f(x) ≈ f(a) + f ′(a)(x− a)

the linear approximation or tangent line approximation of f at a.

Example: Let f(x) =
√
x+ 3, then f ′(x) = 1

2
√
x+3

. Close to a = 1, the linear approxi-

mation is f(1) + f ′(1)(x− 1) = 2 + 1
4
(x− 1) = 7

4
+ 1

4
x. So we can approximate numbers like√

3.98 =
√

0.98 + 3 by
√

3.98 ≈ 7

4
+

0.98

4
= 1.995

and
√

4.05 =
√

1.05 + 3 by
√

4.05 ≈ 7

4
+

1.05

4
= 2.0125.

What is this good for? In many cases in the physical world, we only look at some pa-
rameters that vary very little or are very small, in which case considering linear functions as
approximations to more complicated functions makes our work much easier. One situation
that you have already encountered was in physics class, in deriving a formula for the period
of a pendulum (draw picture). Here we have θ(t) the angle at time t, g the gravitational

acceleration, l the length of the pendulum, then the tangential acceleration d2θ
dt2

= −g
l

sin(θ)

is approximated by d2θ
dt2

= −gθ for small angles θ.
First question: why is this approximation ok? Well, at a = 0, the linear approximation

of f(x) = sin(x) is f(x) ≈ f(0) + f ′(0)(x− 0) = sin(0) + cos(0)(x− 0) = 0 + 1(x− 0) = x.
Second question: where do we need the motion of the pendulum in real life, especially where
θ is small? In fact, such approximations like sin(x) ≈ x for small x or cos(x) = 1 for small
x are used often in modeling systems that are periodic, and periodic processes are found a
lot in nature (sound waves, all other kinds of waves, life cycles in modeling populations, the
economic cycle etc.) Of course, such approximations have their own shortcomings, and there
is a lot of theory dealing with what to do when you can’t necessarily approximate linearly;
you can learn methods on how to deal with such situations in a differential equations class.

A cool example of an application is the following situation: I am on Earth, and a satellite
is flying above the planet with velocity v. According to special relativity, me and the satellite



will record two different times: satellite’s clock recordts time T , my clock records time Tm.
The equation relating the two times is

Tm =
T√

1− v2

c2

where c is the speed of light. How are the two times different?
Let x = v2

c2
, then Tm = T · 1√

1−x = Tf(x), where f(x) = 1√
1−x . Then the linear approxima-

tion of f(x) at x = 0 is f(x) ≈ f(0)+f ′(0)(x−0) = 1+ 1
2
x since f ′(x) = −1

2
(1−x)−3/2(−1) =

1
2
(1− x)−3/2 and f ′(0) = 1

2
1−3/2 = 1

2
. Then

Tm ≈ T (1 +
1

2

v2

c2
) ≈ T,

since the speed of light is much larger than the speed of the satelite, so v2

c2
≈ 0.

Such models have actually been used by engineers to calibrate the transmitters on the GPS
satelites; since there will be a difference in the time on our GPS devices and the satellites,
they needed to make sure there won’t be a significant error in the devices’s estimate of our
position.

Group work:
1. Use Newton’s method to find x2, the third approximation to the root of 2x3−3x2+2 = 0,

given x0 = −1. Give your answer to 4 decimal places.
Solution: First, given f(x) = 2x3 − 3x2 + 2, we find f ′(x) = 6x2 − 6x. Then

x1 = −1− f(−1)

f ′(−1)
= −1− −3

12
= −1 +

1

4
=
−3

4

and

x2 = −0.75− f(−0.75)

f ′(−0.75)
≈ −0.6825

2. Use linear approximation to approximate the following functions:

f(x) = sin(x) at a = π/6

and

g(x) = ex at a = 0

Solution: f ′(x) = cos(x), and at a = π
6
,

f(x) ≈ sin(π/6) + cos(π/6)(x− π/6) =
1

2
+

√
3

2
(x− π

6
)

g′(x) = ex, and at a = 0, we have

g(x) ≈ e0 + e0(x− 0) = 1 + x

3. Once you found the approximation of g(x) = ex above, approximate n
√
e = e1/n for a

natural number n. Taking nth powers of both sides, what approximation of e do you get?
Since the approximation of ex gets bettwe as x gets closer to 0, the approximation of e above



gets better as n grows larger (since then 1/n gets closer to 0). Taking limits as n→∞, you
should get that

e = lim
n→∞

(
1 +

1

n

)n
The constant e in this form has been discovered in 1683 by Jacob Bernoulli while studying
a question about compound interest.

Solution: Since above we saw that ex ≈ 1 + x when x is small, e1/n ≈ 1 + 1/n, so taking
nth powers of both sides, we have e ≈ (1 + 1/n)n.


