SET 1

(1) Solve for x :
(a) $e^{2^{x}}=5^{3^{x}}$

Solution:

We take natural log on both sides:

$$
\begin{gathered}
\ln \left(e^{2^{x}}\right)=\ln \left(5^{3^{x}}\right) \\
2^{x}=3^{x} \ln (5)
\end{gathered}
$$

Now we take log base 2 on both sides:

$$
\begin{gathered}
\log _{2}\left(2^{x}\right)=\log _{2}\left(3^{x} \ln 5\right) \\
x=\log _{2}\left(3^{x}\right)+\log _{2}(\ln (5)) \\
x-x \log _{2} 3=\log _{2}(\ln 5) \\
x\left(1-\log _{2} 3\right)=\log _{2}(\ln 5) \\
x=\frac{\log _{2}(\ln 5)}{1-\log _{2} 3}
\end{gathered}
$$

Since the initial equation is defined on all real numbers, plugging this solution in the initial equation makes sense, so this is indeed a solution.
(b) $\log _{2}(x+1)+\log _{2}(x+2)=1$

Solution:

This equation is defined when the arguments inside the logarithms are positive, that is, when $x+1>0$ and $x+2>0$. Thus, the solutions will be in the interval $(-1,+\infty)$. We proceed to solve the equation:

$$
\log _{2}(x+1)(x+2)=1
$$

We raise 2 to the power of both sides

$$
\begin{gathered}
2^{\log _{2}(x+1)(x+2)}=2^{1} \\
(x+1)(x+2)=2 \\
x^{2}+3 x+2=2 \\
x^{2}+3 x=0 \\
x(x+3)=0
\end{gathered}
$$

So the possible solutions are $x=0$ and $x=-3$. But since we were looking only at solutions in the interval $(-1,+\infty)$, the only solution is $x=0$.
(2) Let $f(x)=2 \cos (4 x)$. What is the amplitude? What is the period? Graph the function on the interval $[0,4 \pi]$

Solution:

The amplitude is 2 , the period is $\frac{2 \pi}{4}=\frac{\pi}{2}$. In the graph below, note that since the period is $\pi / 2$, we have the portion of the graph from 0 to $\pi / 2$ ($\pi / 2$ is approximately 1.6) repeating itself 8 times in the interval $[0,4 \pi]$

(3) Solve for x :

$$
\tan \left(x+\frac{\pi}{2}\right)=\frac{1}{\sqrt{3}}
$$

Solution:
We know that the angle $\pi / 6$ has tangent $\frac{1}{\sqrt{3}}$, and that we obtain all such angles by going around the circle additional multiples of π in both directions. Therefore,

$$
\begin{array}{ll}
x+\frac{\pi}{2}=\frac{\pi}{6}+k \pi, & k \in \mathbb{Z} \\
x=\frac{\pi}{6}-\frac{\pi}{2}+k \pi, & k \in \mathbb{Z} \\
x=\frac{\pi-3 \pi}{6}+k \pi, & k \in \mathbb{Z} \\
x=\frac{-\pi}{3}+k \pi, & k \in \mathbb{Z}
\end{array}
$$

(4) Draw the appropriate right triangle and evaluate

$$
\cos \left(\arcsin \left(\frac{1}{10}\right)\right)
$$

Solution: We get the following triangle, where the third side length is given by the Pythagorean Theorem : $\sqrt{10^{2}-1^{2}}=\sqrt{99}=3 \sqrt{11}$. The angle we are interested in is θ, and $\cos (\theta)=\frac{3 \sqrt{11}}{10}$.

SET 2

(1) Solve for x :
(a) $2^{3 x+3}=5^{2 x+1}$

Solution:

We take log base 2 on both sides:

$$
\begin{gathered}
\log _{2}\left(2^{3 x+3}\right)=\log _{2}\left(5^{2 x+1}\right) \\
3 x+3=(2 x+1) \log _{2} 5 \\
3 x-2 x \log _{2} 5=\log _{2} 5-3 \\
x\left(3-2 \log _{2} 5\right)=\log _{2} 5-3 \\
x=\frac{\log _{2} 5-3}{3-2 \log _{2} 5}
\end{gathered}
$$

Since the initial equation is defined on all real numbers, plugging this solution in the initial equation makes sense, so this is indeed a solution.
(b) $\ln (x+7)-\ln (x+1)=\ln (x-3)$

Solution:

This equation is defined when the arguments inside the logarithms are positive, that is, when $x+7>0, x+1>0$ and $x-3>0$. Thus, the solutions will be in the interval $(3,+\infty)$. We proceed to solve the equation:

$$
\ln \frac{x+7}{x+1}=\ln (x-3)
$$

We raise e to the power of both sides

$$
\begin{gathered}
e^{\ln \frac{x+7}{x+1}}=e^{\ln (x-3)} \\
\frac{x+7}{x+1}=x-3 \\
x+7=(x-3)(x+1) \\
x+7=x^{2}-2 x-3 \\
x^{2}-3 x-10=0
\end{gathered}
$$

Using the quadratic formula, we have the possible solutions $x=-2$ and $x=5$. But since we were looking only at solutions in the interval $(3,+\infty)$, the only solution is $x=5$.
(2) Let $f(x)=5 \sin \left(\frac{3 x}{2}\right)$. What is the amplitude? What is the period? Graph the function on the interval $[0,4 \pi]$

Solution: The amplitude is 5 , the period is $\frac{2 \pi}{\frac{3}{2}}=\frac{4 \pi}{3}$. In the graph below, note that since the period is $4 \pi / 3$, we have the portion of the graph from 0 to $4 \pi / 3(4 \pi / 3$ is approximately 4.2) repeating itself 3 times in the interval [$0,4 \pi$]

(3) Solve for x :

$$
\cos (x)=\frac{1}{\sqrt{2}}
$$

Solution:

We know two angles that have cosine $\frac{1}{\sqrt{2}}: \frac{\pi}{4}$ and $\frac{-\pi}{4}$. We obtain half the angles that have cosine $\frac{1}{\sqrt{2}}$ by going around the circle multiples of 2π from $\pi / 4$, and we obtain the other half of angles by going around the circle additional multiples of 2π from $-\pi / 4$. Therefore, we have two kinds of angles:

$$
\frac{\pi}{4}+2 k \pi, \quad k \in \mathbb{Z}
$$

and

$$
\frac{-\pi}{4}+2 k \pi, \quad k \in \mathbb{Z}
$$

(4) Draw the appropriate right triangle and evaluate

$$
\tan \left(\arccos \left(\frac{2}{7}\right)\right)
$$

Solution:

We get the following triangle, where the third side length is given by the Pythagorean Theorem : $\sqrt{7^{2}-2^{2}}=\sqrt{45}=3 \sqrt{5}$. The angle we are interested in is θ, and $\tan (\theta)=\frac{3 \sqrt{5}}{2}$.

SET 3

(1) Solve for x :
(a) $2^{3^{x}}=4^{2^{x}}$

Solution: We rewrite $2^{3^{x}}=4^{2^{x}}$ as $2^{3^{x}}=\left(2^{2}\right)^{2^{x}}$, so $2^{3^{x}}=2^{2 \cdot 2^{x}}$. Now we take log base 2 from both sides, and

$$
\begin{gathered}
\log _{2}\left(2^{3^{x}}\right)=\log _{2}\left(2^{2 \cdot 2^{x}}\right) \\
3^{x}=2 \cdot 2^{x} \\
3^{x}=2^{x+1}
\end{gathered}
$$

Now we take \log base 2 again on both sides, and we get

$$
\begin{gathered}
\log _{2}\left(3^{x}\right)=\log _{2}\left(2^{x+1}\right) \\
x \log _{2} 3=x+1 \\
x \log _{2} 3-x=1 \\
x\left(\log _{2} 3-1\right)=1 \\
x=\frac{1}{\log _{2} 3-1}
\end{gathered}
$$

Since the initial equation is defined on all real numbers, plugging this solution in the initial equation makes sense, so this is indeed a solution.
(b) $\log _{10}(x+3)+\log _{10}(x+4)=\log _{10}(6)$

Solution:

This equation is defined when the arguments inside the logarithms are positive, that is, when $x+3>0$ and $x+4>0$. Thus, the solutions will be in the interval $(-3,+\infty)$. We proceed to solve the equation:

$$
\log _{10}(x+3)(x+4)=\log _{10}(6)
$$

We raise 10 to the power of both sides

$$
\begin{gathered}
10^{\log _{10}(x+3)(x+4)}=10^{\log _{10}(6)} \\
(x+3)(x+4)=6 \\
x^{2}+7 x+12=6 \\
x^{2}+7 x+6=0
\end{gathered}
$$

Using the quadratic formula, we get the possible solutions to be $x=-1$ and $x=-6$. But since we were looking only at solutions in the interval $(-3,+\infty)$, the only solution is $x=-1$.
(2) Let $f(x)=3 \sin \left(\frac{4 x}{3}\right)$. What is the amplitude? What is the period? Graph the function on the interval $[0,3 \pi]$

Solution:
The amplitude is 3 , the period is $\frac{2 \pi}{\frac{4}{3}}=\frac{3 \pi}{2}$. In the graph below, note that since the period is $3 \pi / 2$, we have the portion of the graph from 0 to $3 \pi / 2$ ($3 \pi / 2$ is approximately 4.7) repeating itself 2 times in the interval $[0,4 \pi]$

(3) Solve for x :

$$
\sin (x)=-\frac{1}{2}
$$

Solution:

We know two angles that have sine $-\frac{1}{2}:-\frac{\pi}{6}$ and $\pi+\frac{\pi}{6}$. We obtain half the angles that have sine $-\frac{1}{2}$ by going around the circle multiples of 2π from $-\frac{\pi}{6}$, and we obtain the other half of angles by going around the circle additional multiples of 2π from $\pi+\frac{\pi}{6}$. Therefore, we have two kinds of angles:

$$
-\frac{\pi}{6}+2 k \pi, \quad k \in \mathbb{Z}
$$

and

$$
\pi+\frac{\pi}{6}+2 k \pi, \quad k \in \mathbb{Z}
$$

(4) Draw the appropriate right triangle and evaluate

$$
\sin (\arctan (5))
$$

Solution:

We get the following triangle, where the third side length is given by the Pythagorean Theorem : $\sqrt{1^{2}+5^{2}}=\sqrt{26}$. The angle we are interested in is θ, and $\sin (\theta)=\frac{5}{\sqrt{26}}$.

