DIFFERENTIATION WORKSHEET II

Exercise 1. Find the following derivatives:
(1) $(\sin (x) \cos (x))^{\prime}=(\sin (x))^{\prime} \cos (x)+\sin (x)(\cos (x))^{\prime}=\cos ^{2}(x)-\sin ^{2}(x)$
(2) $\left(\left(2 x^{2}+e^{x}\right) \tan (x)\right)^{\prime}=\left(2 x^{2}+e^{x}\right)^{\prime} \tan (x)+\left(2 x^{2}+e^{x}\right)(\tan (x))^{\prime}=\left(4 x+e^{x}\right) \tan (x)+$ $\left(2 x^{2}+e^{x}\right) \sec ^{2}(x)$
(3) $\left(\frac{\cos (x)}{1-\sin (x)}\right)^{\prime}=\frac{(\cos (x))^{\prime}(1-\sin (x))-\cos (x)(1-\sin (x))^{\prime}}{(1-\sin (x))^{2}}=$
$\frac{-\sin (x)(1-\sin (x))-\cos (x)(-\cos (x))}{(1-\sin (x))^{2}}=\frac{-\sin (x)+\sin ^{2}(x)+\cos ^{2}(x)}{(1-\sin (x))^{2}}=\frac{1-\sin (x)}{(1-\sin (x))^{2}}=\frac{1}{1-\sin (x)}$
(4) $\left(\frac{1+\cos (x)}{x}\right)^{\prime}=\frac{(1+\cos (x))^{\prime} x-(1+\cos (x))(x)^{\prime}}{x^{2}}=\frac{-\sin (x) x-(1+\cos (x))}{x^{2}}$

Exercise 2. What is the 17 th derivative of $\sin (x)$?
Solution: By our formulas for the derivatives of $\sin (x), \cos (x)$, we have

$$
\begin{aligned}
\frac{d}{d x}(\sin (x)) & =\cos (x) \\
\frac{d^{2}}{d x^{2}}(\sin (x)) & =-\sin (x) \\
\frac{d^{3}}{d x^{3}}(\sin (x)) & =-\cos (x), \\
\frac{d^{4}}{d x^{4}}(\sin (x)) & =\sin (x)
\end{aligned}
$$

so the higher derivatives of $\sin (x)$ repeat themselves after 4 iterations. Therefore,

$$
\begin{aligned}
\frac{d^{8}}{d x^{8}}(\sin (x)) & =\sin (x) \\
\frac{d^{12}}{d x^{12}}(\sin (x)) & =\sin (x), \\
\frac{d^{16}}{d x^{16}}(\sin (x)) & =\sin (x),
\end{aligned}
$$

and therefore

$$
\frac{d^{17}}{d x^{17}}(\sin (x))=\cos (x)
$$

Exercise 3: Using the limit definition of the derivative, show that the sum rule is true, that is, that

$$
(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)
$$

Solution:
$(f(x)+g(x))^{\prime}=\lim _{h \rightarrow 0} \frac{(f(x+h)+g(x+h))-(f(x)+g(x))}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h}$

The first equality follows from the definition of the derivative. The second from rearranging the terms in the numerator. Then the whole expression is equal to
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f^{\prime}(x)+g^{\prime}(x)$
The first equality above is from rewriting the fraction as the sum of two fractions. The second equality follows since each of the two limits is the definition of a derivative.

Exercise 4: Find the following derivatives:
(1) $\left(x^{2} \cos (x) e^{x}\right)^{\prime}=\left(x^{2} \cos (x)\right)^{\prime} e^{x}+x^{2} \cos (x)\left(e^{x}\right)^{\prime}=\left(\left(x^{2}\right)^{\prime} \cos (x)+x^{2}(\cos (x))^{\prime}\right) e^{x}+$ $x^{2} \cos (x) e^{x}=\left(2 x \cos (x)-x^{2} \sin (x)\right) e^{x}+x^{2} \cos (x) e^{x}$
(2) $\left(\frac{x^{2} \cos (x)}{e^{x}}\right)^{\prime}=\frac{\left(x^{2} \cos (x)\right)^{\prime} e^{x}-x^{2} \cos (x)\left(e^{x}\right)^{\prime}}{\left(e^{x}\right)^{2}}=\frac{\left(2 x \cos (x)-x^{2} \sin (x)\right) e^{x}-x^{2} \cos (x) e^{x}}{\left(e^{x}\right)^{2}}=$ $\frac{2 x \cos (x)-x^{2} \sin (x)-x^{2} \cos (x)}{e^{x}}$

The second equality follows since in part (1) we found $\left(x^{2} \cos (x)\right)^{\prime} e^{x}=(2 x \cos (x)-$ $\left.x^{2} \sin (x)\right) e^{x}$

