Implicit Differentiation Practice

1. Find the equation of the tangent line to the curve

$$
x^{2}+x y+y^{2}=3 .
$$

at $(1,1)$.

Answer:

We first take the derivative of both sides. Doing so gives us,

$$
2 x+\left(x \frac{d y}{d x}+y\right)+2 y \frac{d y}{d x}=0
$$

Solving for $d y / d x$ gives us

$$
\frac{d y}{d x}=-\frac{2 x+y}{2 y+x}
$$

Plugging in the point $(1,1)$ gives

$$
\frac{d y}{d x}=-\frac{2(1)+1}{2(1)+1}=-1 .
$$

Thus the equation of the tangent line to the curve at $(1,1)$ is

$$
t(x)=-1(x-1)+1=-x+2
$$

2. Find the equation of the tangent line to the curve

$$
x^{2}+2 x y-y^{2}+x=2
$$

at $(1,2)$.

Answer:

We first take the derivative of both sides. Doing so gives us,

$$
2 x+2\left(x \frac{d y}{d x}+y\right)-2 y \frac{d y}{d x}+1=0 .
$$

Solving for $d y / d x$ gives us

$$
\frac{d y}{d x}=-\frac{2 x+2 y+1}{2 x-2 y}
$$

Plugging in the point $(1,2)$ gives

$$
\frac{d y}{d x}=-\frac{2(1)+2(2)+1}{2(1)-2(2)}=\frac{7}{2}
$$

Thus the equation of the tangent line to the curve at $(1,1)$ is

$$
t(x)=\frac{7}{2}(x-1)+2=\frac{7}{2} x-\frac{3}{2} .
$$

3. Find the equation of the tangent line to the curve

$$
x^{2 / 3}+y^{2 / 3}=4 .
$$

at $(-3 \sqrt{3}, 1)$.
Answer:
We first take the derivative of both sides. Doing so gives us,

$$
\frac{2}{3 \sqrt[3]{x}}+\frac{2}{3 \sqrt[3]{y}} \frac{d y}{d x}=0
$$

Solving for $d y / d x$ gives us

$$
\frac{d y}{d x}=-\frac{\sqrt[3]{y}}{\sqrt[3]{x}}
$$

Plugging in the point $(-3 \sqrt{3}, 1)$ gives

$$
\frac{d y}{d x}=-\frac{\sqrt[3]{1}}{\sqrt[3]{-3 \sqrt{3}}}=\frac{1}{-\sqrt[3]{3^{3 / 2}}}=-\frac{1}{\sqrt{3}}
$$

Thus the equation of the tangent line to the curve at $(1,1)$ is

$$
t(x)=-\frac{1}{\sqrt{3}}(x-(-3 \sqrt{3}))+1=-\frac{1}{\sqrt{3}} x-2
$$

