Chain Rule Practice

Compute the following derivatives.

1. Find the derivative of

$$
f(x)=e^{\cos (x)} .
$$

Answer:

We observe that $f(x)$ can be decomposed into $g(h(x))$ where $g(x)=e^{x}$ and $h(x)=\cos (x)$, since we must first take the cosine of x and then raise e to that power.
Thus by the chain rule

$$
f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime(x)}=e^{h(x)} h^{\prime}(x)=e^{\cos (x)} h^{\prime}(x)=e^{\cos (x)}(-\sin (x))=-e^{\cos (x)} \sin (x) .
$$

2. Find the derivative of

$$
g(x)=\cos \left(x^{2}\right) \sin \left(x^{3}\right) .
$$

Answer:

We observe that $g(x)$ can be broken into a non-trivial product $g(x)=g_{1}(x) g_{2}(x)$ where $g_{1}(x)=\cos \left(x^{2}\right)$, and $g_{2}(x)=\sin \left(x^{3}\right)$.
Thus we need to compute the derivative of $g_{1}(x)$ and $g_{2}(x)$. We observe that g_{1} can be decomposed as $f_{1}\left(h_{1}(x)\right)$ where $f_{1}(x)=\cos (x)$ and $h_{1}(x)=x^{2}$. Thus by the chain rule

$$
g_{1}^{\prime}(x)=f_{1}^{\prime}\left(h_{1}(x)\right) h_{1}^{\prime}(x)=-\sin \left(h_{1}(x)\right) h_{1}^{\prime}(x)=-\sin \left(x^{2}\right) h_{1}^{\prime}(x)=-\sin \left(x^{2}\right) 2 x=-2 x \sin \left(x^{2}\right) .
$$

We also observe that g_{2} can be decomposed as $f_{2}\left(h_{2}(x)\right)$ where $f_{2}(x)=\sin (x)$ and $h_{2}(x)=x^{3}$. Thus by the chain rule

$$
g_{2}^{\prime}(x)=f_{2}^{\prime}\left(h_{2}(x)\right) h_{2}^{\prime}(x)=\cos \left(h_{2}(x)\right) h_{2}^{\prime}(x)=\cos \left(x^{3}\right) h_{2}^{\prime}(x)=\cos \left(x^{3}\right) 3 x^{2}=3 x^{2} \cos \left(x^{3}\right) .
$$

Thus by the product rule

$$
g^{\prime}(x)=g_{1}(x) g_{2}^{\prime}(x)+g_{1}^{\prime}(x) g_{2}(x)=\cos \left(x^{2}\right)\left(2 x^{2} \cos \left(x^{3}\right)\right)+\sin \left(x^{3}\right)\left(-3 x \sin \left(x^{2}\right)\right),
$$

so

$$
g^{\prime}(x)=3 x^{2} \cos \left(x^{2}\right) \cos \left(x^{3}\right)-2 x \sin \left(x^{3}\right) \sin \left(x^{2}\right)
$$

3. Find the derivative of

$$
\ell(x)=\cos \left(x e^{x}\right) .
$$

Answer:

We observe that $\ell(x)$ can be decomposed into $f(g(x))$ where $g(x)=x e^{x}$ and $f(x)=\cos (x)$. Thus by the chain rule

$$
\ell^{\prime}(x)=f^{\prime}(g(x)) g^{\prime(x)}=-\sin (g(x)) g^{\prime}(x)=-\sin \left(x e^{x}\right) g^{\prime}(x)=-\sin \left(x e^{x}\right) \frac{d}{d x}(g(x))
$$

Since $g(x)$ can be written as the product of two non-trivial functions $g_{1} g_{2}$ where $g_{1}(x)=x$ and $g_{2}(x)=e^{x}$. Thus, by the product rule, we have

$$
g^{\prime}(x)=g_{1}^{\prime}(x) g_{2}(x)+g_{2}^{\prime}(x) g_{1}(x)=1 e^{x}+x e^{x}=(1+x) e^{x}
$$

Thus

$$
\ell^{\prime}(x)=-\sin \left(x e^{x}\right)(1+x) e^{x}
$$

4. Find the derivative of

$$
k(x)=2^{\left(3^{\left(5^{x}\right)}\right)} .
$$

Answer:

We observe that $k(x)$ can be written as the composition of three functions $f(g(h(x)))$ where $f(x)=2^{x}, g(x)=3^{x}$, and $h(x)=5^{x}$.

$$
\frac{d}{d x} k(x)=f^{\prime}(g(h(x))) \frac{d}{d x} g(h(x))=\ln (2) 2^{\left(3^{\left(5^{x}\right)}\right)} \frac{d}{d x}\left(3^{\left(5^{x}\right)}\right) .
$$

Thus we need to apply the chain rule to the composition of g and h. Observe that

$$
\frac{d}{d x} g(h(x))=g^{\prime}(h(x)) \frac{d}{d x} h(x)=\ln (3) 3^{\left(5^{x}\right)} \ln (5) 5^{x} .
$$

Thus

$$
\frac{d}{d x} k(x)=\ln (2) 2^{\left(3^{\left(5^{x}\right)}\right)} \ln (3) 3^{\left(5^{x}\right)} \ln (5) 5^{x}=\ln (2) \ln (3) \ln (5) 2^{\left(3^{\left(5^{x}\right)}\right)} 3^{\left(5^{x}\right)} 5^{x}
$$

