Trigonometric Derivative Practice Compute the following derivatives.

1. Find the derivative of

$$
f(x)=\cot (x)
$$

Answer:

We know $\cot (x)=\frac{\cos (x)}{\sin (x)}$. Thus by the quotient rule we have

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left(\frac{\cos (x)}{\sin (x)}\right)=\frac{\sin (x) \frac{d}{d x}(\cos (x))-\cos (x) \frac{d}{d x}(\sin (x))}{(\sin (x))^{2}} \\
& =\frac{-(\sin (x))^{2}-(\cos (x))^{2}}{(\sin (x))^{2}} \\
& =\frac{-1}{(\sin (x))^{2}} \\
& =-(\csc (x))^{2} .
\end{aligned}
$$

2. Find the derivative of

$$
g(x)=(\cos (x))^{2}
$$

Answer:

We may think of $(\cos (x))^{2}$ as $\cos (x) \cos (x)$ and use the product rule.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}(\cos (x) \cos (x)) \\
& =\cos (x) \frac{d}{d x}(\cos (x))+\cos (x) \frac{d}{d x}(\cos (x)) \\
& =\cos (x)(-\sin (x))+\cos (x)(-\sin (x)) \\
& =-2 \cos (x) \sin (x) .
\end{aligned}
$$

3. Find the derivative of

$$
\ell(x)=\cos (x) x^{2} e^{x}
$$

Answer:

We know that

$$
\frac{d}{d x} \cos (x)=-\sin (x), \quad \frac{d}{d x}\left(x^{2}\right)=2 x, \quad \text { and } \quad \frac{d}{d x} e^{x}=e^{x}
$$

Thus

$$
\frac{d}{d x}\left(\cos (x) x^{2}\right)=\cos (x) \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(\cos (x))=2 x \cos (x)-x^{2} \sin (x)
$$

Thus,

$$
\begin{aligned}
\ell^{\prime}(x) & =\frac{d}{d x}\left(\cos (x) x^{2} e^{x}\right)=\frac{d}{d x}\left(\left(\cos (x) x^{2}\right) e^{x}\right) \\
& =\cos (x) x^{2} \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}\left(\cos (x) x^{2}\right) \\
& =\cos (x) x^{2} e^{x}+e^{x}\left(2 x \cos (x)-x^{2} \sin (x)\right) \\
& =\cos (x) x^{2} e^{x}+\cos (x) 2 x e^{x}-\sin (x) x^{2} e^{x}
\end{aligned}
$$

4. Find the derivative of

$$
k(x)=\frac{x^{3}}{\sin (x) e^{x}}
$$

Answer:

We know that

$$
\frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x}\left(x^{3}\right)=3 x^{2}, \quad \text { and } \quad \frac{d}{d x} e^{x}=e^{x}
$$

Thus

$$
\frac{d}{d x}\left(\sin (x) e^{x}\right)=\sin (x) \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\sin (x))=e^{x} \sin (x)+e^{x} \cos (x)
$$

Thus by the quotient rule,

$$
\begin{aligned}
k^{\prime}(x) & =\frac{d}{d x}\left(\frac{x^{3}}{\sin (x) e^{x}}\right)=\frac{\sin (x) e^{x} \frac{d}{d x}\left(x^{3}\right)-x^{3} \frac{d}{d x}\left(\sin (x) e^{x}\right)}{\left(\sin (x) e^{x}\right)^{2}} \\
& =\frac{3 x^{2} \sin (x) e^{x}-x^{3}\left(e^{x} \sin (x)+e^{x} \cos (x)\right)}{\left(\sin (x) e^{x}\right)^{2}} \\
& =\frac{3 x^{2} \sin (x)-x^{3} \sin (x)-x^{3} \cos (x)}{(\sin (x))^{2} e^{x}} .
\end{aligned}
$$

