Derivative Laws Practice

Using the laws of derivatives, compute the following derivatives.

1. Find the derivative of

$$
f(x)=x^{c} e^{x},
$$

for c a real number.

Answer:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{c} e^{x}\right)=e^{x} \frac{d}{d x}\left(x^{c}\right)+x^{c} \frac{d}{d x}\left(e^{x}\right) \\
& =c x^{c-1} e^{x}+x^{c} e^{x}
\end{aligned}
$$

2. Find the derivative of

$$
g(x)=\frac{e^{x}}{x^{4}}
$$

Answer:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{x^{4} \frac{d}{d x}\left(e^{x}\right)-e^{x} \frac{d}{d x}\left(x^{4}\right)}{\left(x^{4}\right)^{2}} \\
& =\frac{x^{4} e^{x}-4 x^{3} e^{x}}{x^{8}} \\
& =\frac{x^{3} e^{x}(x-4)}{x^{8}} \\
& =\frac{e^{x}(x-4)}{x^{5}}
\end{aligned}
$$

3. Find the second derivative of

$$
\ell(x)=x^{c}
$$

for c a real number

Answer:

$$
\begin{aligned}
\ell^{\prime}(x) & =\frac{d}{d x}\left(\frac{d}{d x}\left(x^{c}\right)\right) \\
& =\frac{d}{d x}\left(c x^{c-1}\right) \\
& =c \frac{d}{d x}\left(x^{c-1}\right) \\
& =c(c-1) x^{c-2}
\end{aligned}
$$

4. Find the derivative of

$$
k(x)=a^{x} b^{x}
$$

where a, b are positive numbers.

Answer:

There are two ways of doing this:
Option 1 (product rule):

$$
\begin{aligned}
k^{\prime}(2) & =\frac{d}{d x}\left(a^{x} b^{x}\right)=a^{x} \frac{d}{d x}\left(b^{x}\right)+b^{x} \frac{d}{d x}\left(a^{x}\right) \\
& =\ln (b) \cdot a^{x} b^{x}+\ln (a) \cdot a^{x} b^{x}
\end{aligned}
$$

Option 2 (exponent laws):

$$
\begin{aligned}
k^{\prime}(2) & =\frac{d}{d x}\left(a^{x} b^{x}\right)=\frac{d}{d x}\left((a b)^{x}\right) \\
& =\ln (a b) \cdot(a b)^{x}
\end{aligned}
$$

Observe that

$$
\ln (b) \cdot a^{x} b^{x}+\ln (a) \cdot a^{x} b^{x}=(\ln (b)+\ln (a)) \cdot a^{x} b^{x}=\ln (a b) \cdot a^{x} b^{x}=\ln (a b) \cdot(a b)^{x},
$$

and so the two answers are in fact equal.

