Taylor Polynomial Practice

1. Consider the function

$$
f(x)=\cos (x)
$$

Compute the $5^{\text {th }}$ degree Taylor polynomial of $f(x)$ centered at 0 .

Answer:

We need to know the first 5 derivatives of $\cos (x)$, which are

$$
-\sin (x), \quad-\cos (x), \quad \sin (x), \quad \cos (x), \quad \text { and } \quad-\sin (x)
$$

respectively.
Thus the $5^{\text {th }}$ degree Taylor polynomial of $f(x)$ centered at 0 is

$$
\begin{aligned}
T_{5}(x) & =\frac{\cos (0)}{0!}(x-0)^{0}+\frac{-\sin (0)}{1!}(x-0)^{1}+\frac{-\cos (0)}{2!}(x-0)^{2} \\
& +\frac{\sin (0)}{3!}(x-0)^{3}+\frac{\cos (0)}{4!}(x-0)^{4}+\frac{-\sin (0)}{5!}(x-0)^{5}
\end{aligned}
$$

which can be reduced to

$$
T_{5}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}
$$

2. Consider the function

$$
g(x)=\ln (x)
$$

Compute the $5^{\text {th }}$ degree Taylor polynomial of $g(x)$ centered at 1 .

Answer:

We need to know the first 5 derivatives of $\ln (x)$, which are

$$
\frac{1}{x}, \quad-\frac{1}{x^{2}}, \quad \frac{2}{x^{3}}, \quad-\frac{6}{x^{4}}, \quad \text { and } \quad \frac{24}{x^{5}},
$$

respectively.
Thus the $5^{\text {th }}$ degree Taylor polynomial of $g(x)$ centered at 1 is

$$
\begin{aligned}
T_{5}(x) & =\frac{\ln (1)}{0!}(x-1)^{0}+\frac{1}{(1) 1!}(x-1)^{1}+\frac{-1}{(1)^{2} 2!}(x-0)^{2} \\
& +\frac{2}{(1)^{3} 3!}(x-1)^{3}+\frac{-6}{(1)^{4} 4!}(x-1)^{4}+\frac{24}{(1)^{5} 5!}(x-1)^{5}
\end{aligned}
$$

which can be reduced to

$$
T_{5}=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\frac{1}{5}(x-1)^{5}
$$

3. Consider the function

$$
h(x)=e^{x}
$$

Compute the $5^{\text {th }}$ degree Taylor polynomial of $h(x)$ centered at 0 . How could you use this to approximate e ?

Answer:

We need to know the first 5 derivatives of e^{x}. But the derivative of e^{x} is itself. So

$$
h^{(n)}(x)=\frac{d^{n}}{d x^{n}}\left(e^{x}\right)=e^{x} .
$$

respectively.
Thus the $5^{\text {th }}$ degree Taylor polynomial of $h(x)$ centered at 0 is

$$
\begin{aligned}
T_{5}(x) & =\frac{e^{0}}{0!}(x-0)^{0}+\frac{e^{0}}{1!}(x-0)^{1}+\frac{e^{0}}{2!}(x-0)^{2} \\
& +\frac{e^{0}}{3!}(x-0)^{3}+\frac{e^{0}}{4!}(x-0)^{4}+\frac{e^{0}}{5!}(x-0)^{5}
\end{aligned}
$$

which can be reduced to

$$
T_{5}=1+\frac{x}{1}+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}
$$

If we want to approximate e, we know that $h(1)=e^{1}=1$. So we know that

$$
e \approx 1+\frac{1}{1}+\frac{1}{2}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}
$$

