Taylor Polynomial Practice

1. Consider the function

 $f(x) = \cos(x)$

Compute the 5th degree Taylor polynomial of f(x) centered at 0.

Answer:

We need to know the first 5 derivatives of $\cos(x)$, which are

$$-\sin(x),$$
 $-\cos(x),$ $\sin(x),$ $\cos(x),$ and $-\sin(x),$

respectively.

Thus the 5th degree Taylor polynomial of f(x) centered at 0 is

$$T_5(x) = \frac{\cos(0)}{0!}(x-0)^0 + \frac{-\sin(0)}{1!}(x-0)^1 + \frac{-\cos(0)}{2!}(x-0)^2 + \frac{\sin(0)}{3!}(x-0)^3 + \frac{\cos(0)}{4!}(x-0)^4 + \frac{-\sin(0)}{5!}(x-0)^5,$$

which can be reduced to

$$T_5 = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

2. Consider the function

$$g(x) = \ln(x)$$

Compute the 5th degree Taylor polynomial of g(x) centered at 1.

Answer:

We need to know the first 5 derivatives of $\ln(x)$, which are

$$\frac{1}{x}$$
, $-\frac{1}{x^2}$, $\frac{2}{x^3}$, $-\frac{6}{x^4}$, and $\frac{24}{x^5}$,

respectively.

Thus the 5th degree Taylor polynomial of g(x) centered at 1 is

$$T_5(x) = \frac{\ln(1)}{0!}(x-1)^0 + \frac{1}{(1)1!}(x-1)^1 + \frac{-1}{(1)^2 2!}(x-0)^2 + \frac{2}{(1)^3 3!}(x-1)^3 + \frac{-6}{(1)^4 4!}(x-1)^4 + \frac{24}{(1)^5 5!}(x-1)^5,$$

which can be reduced to

$$T_5 = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5$$

3. Consider the function

 $h(x) = e^x$

Compute the 5th degree Taylor polynomial of h(x) centered at 0. How could you use this to approximate e?

Answer:

We need to know the first 5 derivatives of e^x . But the derivative of e^x is itself. So

$$h^{(n)}(x) = \frac{d^n}{dx^n}(e^x) = e^x.$$

respectively.

Thus the 5th degree Taylor polynomial of h(x) centered at 0 is

$$T_5(x) = \frac{e^0}{0!}(x-0)^0 + \frac{e^0}{1!}(x-0)^1 + \frac{e^0}{2!}(x-0)^2 + \frac{e^0}{3!}(x-0)^3 + \frac{e^0}{4!}(x-0)^4 + \frac{e^0}{5!}(x-0)^5,$$

which can be reduced to

$$T_5 = 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}$$

If we want to approximate e, we know that $h(1) = e^1 = 1$. So we know that

$$e \approx 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!}$$