Newton's Method Practice

1. Consider the function

$$
x^{5}-x^{3}+2 x^{2}-1
$$

Approximate the root near 1 by eight decimal places.

Answer:

Our function is $f(x)=x^{5}-x^{3}+2 x^{2}-1$. Our initial point will be $x_{1}=1$. The derivative of the function is $f^{\prime}(x)=5 x^{4}-3 x^{2}+4 x$. Thus to compute the next approximation, we use the formula

$$
x_{n+1}=x_{n}-\frac{x_{n}^{5}-x_{n}^{3}+2 x_{n}^{2}-1}{5 x_{n}^{4}-3 x_{n}^{2}+4 x_{n}}
$$

And so we get

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2} \approx 0.83333333 \\
& x_{3} \approx 0.77541271 \\
& x_{4} \approx 0.77005822 \\
& x_{5} \approx 0.77001784 \\
& x_{6} \approx 0.77001784
\end{aligned}
$$

Since we have repeated the first eight decimal places, we have that $f(x)$ has a root at $x \approx$ 0.77001784 .
2. Find the $10^{\text {th }}$ root of 3 to four decimal places.

Answer:

We know that the $10^{\text {th }}$ root of 3 is a root to the function $f(x)=x^{10}-3$.
Thus, our function is $f(x)=x^{10}-3$. Our initial point will be $x_{1}=1$. The derivative of the function is $f^{\prime}(x)=10 x^{9}$. Thus to compute the next approximation, we use the formula

$$
x_{n+1}=x_{n}-\frac{x_{n}^{10}-5}{10 x_{n}^{9}}
$$

And so we get

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2} \approx 1.1381 \\
& x_{3} \approx 1.1179 \\
& x_{4} \approx 1.1161 \\
& x_{5} \approx 1.1161
\end{aligned}
$$

Since we have repeated the first four decimal places, we have that $\sqrt[10]{3} \approx 1.1161$.
3. Find the value for which the following equality holds:

$$
\arctan (x)=x-1
$$

Use 2 as your initial value, and approximate to the first five decimal points.

Answer:

Our function is $f(x)=\arctan (x)-x+1$. Our initial point will be $x_{1}=2$. The derivative of the function is

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}-1
$$

Thus to compute the next approximation, we use the formula

$$
x_{n+1}=x_{n}-\frac{\arctan \left(x_{n}\right)-x_{n}+1}{\frac{1}{1+x_{n}^{2}}-1}
$$

And so we get

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2} \approx 2.12857 \\
& x_{3} \approx 2.13213 \\
& x_{4} \approx 2.13226 \\
& x_{5} \approx 2.13226
\end{aligned}
$$

Since we have repeated the first five decimal places, we have that $\arctan (x)=x-1$ when $x \approx 2.13226$.

