# Math 1 Exam\#2 Review 

Dartmouth College

Thursday 10-13-16

## Contents

Stewart
Trigonometry
Sequences
Limits of functions
Continuity
True/False
Misc Exercises

If you are following along in the textbook, these are the sections that contain the material we covered.

Stewart's Calculus 8th Edition Sections for Exam\#2:
1.2, 6.6, 11.1, 1.5, 1.6, 1.7, 1.8

Select Practice Problems from these sections:
Section 6.6 (Page \#481): 1, 5-7, 11-13, 43-46
Section 11.1 (Page \#744): 1-12, 13-18, 23-46, 49, 51, 53, 72-78
Section 1.5 (Page \#59): 1-9, 11-12, 15-18, 29-34, 38-39, 46
Section 1.6 (Page \#70): 1-4, 9-32, 37-39, 41, 50, 52, 59, 62-65
Section 1.7 (Page \#81): 1-4
Section 1.8 (Page \#91): 1-10, 17-32, 35-40, 45-47, 53-56, 71

## Trigonometry

Stewart's Calculus 8th Edition Sections for Trigonometry:
1.2, 6.6

Select Practice Problems from these sections:
Section 6.6 (Page \#481): 1, 5-7, 11-13, 43-46

For more trigonometry review see:
https://math.dartmouth.edu/~m1f16/MATH1Docs/
TrigonometryReview.pdf
https:
//math.dartmouth.edu/~m1f16/MATH1Docs/SullivanWS3.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
SullivanWS3A.pdf

Other topics on trigonometry we covered include:

- Finding periods and amplitudes of trigonometric functions.
- Graphs of $\sin (x), \cos (x), \tan (x)$ and their inverse functions.
- Graphs of functions of the form $A \sin (B x+C)+D$ and $A \cos (B x+C)+D$.


## Slides from class:

https://math.dartmouth.edu/~m1f16/MATH1Docs/
09-30-Fri-Lecture-Slides-Musty.pdf

## Sequences

Stewart's Calculus 8th Edition Sections for Sequences:
11.1

Select Practice Problems from these sections:
Section 11.1 (Page \#744): 1-12, 13-18, 23-46, 49, 51, 53, 72-78

Other topics on sequences for the exam include:

- bounded + monotone $\Longrightarrow$ convergent
- geometric sequences? what are they? do they converge? which ones converge? Let's find out!


## Slides from class:

https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-10-Slides-10-03-Mon.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-11-Slides-10-05-Wed.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-12-Slides-10-07-Fri.pdf

## Limits of functions

Stewart's Calculus 8th Edition Sections for limits of functions:
1.5, 1.6, 1.7

Select Practice Problems from these sections:
Section 1.5 (Page \#59): 1-9, 11-12, 15-18, 29-34, 38-39, 46
Section 1.6 (Page \#70): 1-4, 9-32, 37-39, 41, 50, 52, 59, 62-65
Section 1.7 (Page \#81): 1-4

Other topics on limits of functions for the exam include:

- horizontal and vertical asymptotes
- write down a rational function with prescribed zeros and asymptotes


## Slides from class:

https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-12-Slides-10-07-Fri.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-13-Slides-10-10-Mon.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-13-Slides-10-10-Mon.pdf

## Continuity

Stewart's Calculus 8th Edition Sections for continuity:
1.8

Select Practice Problems from these sections:
Section 1.8 (Page \#91): 1-10, 17-32, 35-40, 45-47, 53-56, 71

Other topics on continuity for the exam include:

- squeeze theorem


## Slides from class:

https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-14-Slides-10-12-Wed.pdf https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-15-Slides-10-14-Fri.pdf

## True/False

$$
\arccos (\cos (3 \pi / 4))=3 \pi / 4
$$

## True/False

## $\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True

## True/False

## $\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$.

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False All trigonometric functions are continuous on $(-\infty, \infty)$.

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False
All trigonometric functions are continuous on $(-\infty, \infty)$. False

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False
All trigonometric functions are continuous on $(-\infty, \infty)$. False All trigonometric functions are continuous on their domains.

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False
All trigonometric functions are continuous on $(-\infty, \infty)$. False All trigonometric functions are continuous on their domains. True

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False
All trigonometric functions are continuous on $(-\infty, \infty)$. False All trigonometric functions are continuous on their domains. True $\lim _{x \rightarrow a^{+}} f(x)=L \Longrightarrow \lim _{x \rightarrow a}=L$.

## True/False

$\arccos (\cos (3 \pi / 4))=3 \pi / 4$. True $\arctan (\tan (3 \pi / 4))=3 \pi / 4$. False
All trigonometric functions are continuous on $(-\infty, \infty)$. False All trigonometric functions are continuous on their domains. True $\lim _{x \rightarrow a^{+}} f(x)=L \Longrightarrow \lim _{x \rightarrow a}=L$. False.

Suppose $2 x \leq g(x) \leq x^{4}-x^{2}+2$ for all $x$ for all $x$. Use the Squeeze Theorem to evaluate $\lim _{x \rightarrow 1} g(x)$.

Suppose $2 x \leq g(x) \leq x^{4}-x^{2}+2$ for all $x$ for all $x$. Use the Squeeze Theorem to evaluate $\lim _{x \rightarrow 1} g(x)$.

## Solution:

Since

$$
\lim _{x \rightarrow 1} 2 x=\lim _{x \rightarrow 1}\left(x^{4}-x^{2}+2\right)=2
$$

we see by the Squeeze Theorem that $\lim _{x \rightarrow 1} g(x)=2$.

Let

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2-x^{2} & \text { if } 1<x<2 \\ 5 & \text { if } x=2 \\ x-4 & \text { if } x>2\end{cases}
$$

Let

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2-x^{2} & \text { if } 1<x<2 \\ 5 & \text { if } x=2 \\ x-4 & \text { if } x>2\end{cases}
$$

Determine where $g$ is continuous.

Let

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2-x^{2} & \text { if } 1<x<2 \\ 5 & \text { if } x=2 \\ x-4 & \text { if } x>2\end{cases}
$$

Determine where $g$ is continuous.
Solution:
$g$ is continuous on the intervals $(-\infty, 1),(1,2)$, and $(2, \infty)$.

Let

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2-x^{2} & \text { if } 1<x<2 \\ 5 & \text { if } x=2 \\ x-4 & \text { if } x>2\end{cases}
$$

Determine where $g$ is continuous.
Solution:
$g$ is continuous on the intervals $(-\infty, 1),(1,2)$, and $(2, \infty)$.
Does $g$ have any discontinuities? If so, where and what type?

Let

$$
g(x)= \begin{cases}x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2-x^{2} & \text { if } 1<x<2 \\ 5 & \text { if } x=2 \\ x-4 & \text { if } x>2\end{cases}
$$

Determine where $g$ is continuous.

## Solution:

$g$ is continuous on the intervals $(-\infty, 1),(1,2)$, and $(2, \infty)$.
Does $g$ have any discontinuities? If so, where and what type?
Solution:
Jump at 1 and removable at 2.

Compute

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}
$$

Compute

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}
$$

## Solution:

The limit is 1 . To see this, multiply numerator and denominator by $\sqrt{1+x}+\sqrt{1-x}$ and simplify.

## Compute

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

Compute

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

## Solution:

Simplify the fractions to cancel $h$ in the denominator limit is $-2 / x^{3}$.

Let

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

For what values of the constant $c$ is the function $f$ continuous on $(-\infty, \infty)$ ?

Let

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

For what values of the constant $c$ is the function $f$ continuous on $(-\infty, \infty)$ ?

## Solution:

Since both defining functions are continuous (on all of $\mathbb{R}$ ), the only place we need to check for continuity is at 2 . By the defining expressions we see that continuity at 2 depends only on the equality

$$
c \cdot 2^{2}+2 \cdot 2=2^{3}-c \cdot 2
$$

Since this equality is satisfied only by $c=2 / 3$, then this is the unique value of $c$ making $f$ continuous everywhere.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

## Solution:

$f$ has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

## Solution:

$f$ has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

What about for $f^{-1}(x)=\arctan (x)$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

## Solution:

$f$ has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

What about for $f^{-1}(x)=\arctan (x)$.

## Solution:

$f^{-1}$ has no vertical asymptotes. It has 2 horizontal asymptotes
$y= \pm \pi / 2$.

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ?

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$.

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is $f$ continuous?

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is $f$ continuous? It's continuous on its domain.

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is $f$ continuous? It's continuous on its domain. Does $f$ have any discontinuities?

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is $f$ continuous? It's continuous on its domain. Does $f$ have any discontinuities? Yes. Now that $f$ is defined near zero, $f$ has an infinite discontinuity at zero.

Let $f(x)=\log (x)$. Where is $f$ continuous? Is $f$ discontinuous anywhere?

## Solution:

$f$ is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$ ?

Solution: Well, what is the domain of $f$ ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is $f$ continuous? It's continuous on its domain. Does $f$ have any discontinuities? Yes. Now that $f$ is defined near zero, $f$ has an infinite discontinuity at zero. Should we graph $f$ ?

Let

$$
f(x)=\left\{\begin{array}{ll}
\sin x & \text { if } x<\pi / 4 \\
\cos x & \text { if } x \geq \pi / 4
\end{array} .\right.
$$

Where is $f$ continuous? Is $f$ discontinuous anywhere?

Let

$$
f(x)=\left\{\begin{array}{ll}
\sin x & \text { if } x<\pi / 4 \\
\cos x & \text { if } x \geq \pi / 4
\end{array} .\right.
$$

Where is $f$ continuous? Is $f$ discontinuous anywhere?
Solution: $f$ is continuous everywhere.

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

## Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$ ?

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

## Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$ ? Well, that has the correct vertical asymptotes but what about the horizontal one?

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

## Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$ ? Well, that has the correct vertical asymptotes but what about the horizontal one? To yield the correct horizontal asymptote we define

$$
f(x)=\frac{5(x-5)^{3}}{(x+3)(x-2) x}
$$

Why $x-5$ ? Well, it doesn't really matter except that we don't want the numerator to be zero when the denominator is. So 5 could have been anything except $-3,0,2 \ldots$

