Math 1 Final Exam Review

Dartmouth College

The Last Week

Contents

Reminders/Announcements

Functions
Sequences

Trigonometry

Limits
Derivatives
Applications

True/False

Reminders/Announcements

- The final exam date is Friday November 18th
- The final exam time it 11:30am - 2:30pm
- The final exam location is Dartmouth Hall 105

Functions

Topics Concerning Functions

- definitions of lots of types of functions
- even and odd functions
- continuity
- domain / range
- solve $f(x)=0$
- inverse functions
- domain / range under transformations

Exercises Concerning Functions

1. Let $f(x)=\sin (x)$ and $g(x)=\arcsin (x)$. What are the domains and ranges of $f, g, f \circ g, g \circ f$?
2. Let $f(x)=x^{2}$ and $g(x)=\sqrt{x+1}$. What are the domains and ranges of $f, g, f \circ g, g \circ f$?
3. Find all solutions to $\ln (x+2)+\ln (x-2)=\ln (6)$.
4. Find all solutions to $2^{3 x+1}=4^{x}$.
5. Suppose $f(x)$ is one-to-one and has domain $[-2,3]$ and range $[0,8]$. Find the domain and range of $-f(-x-1)$.
6. Suppose $f(x)$ is one-to-one and has domain $[-2,3]$ and range $[0,8]$. Find the domain and range of $3 f(2 x+1)$.
7. Suppose $f(x)$ is one-to-one and has domain $[-2,3]$ and range $[0,8]$. Find the domain and range of $4 f^{-1}(-x)+1$.

More Exercises Concerning Functions

1. What is the definition of continuity? (It involves a limit)
2. Which trigonometric functions are continuous on \mathbb{R} ?
3. Is $f(x)=\frac{x^{2}+x}{x^{4}}$ an even function?
4. Find all solutions to $\sin (x)=0$.
5. Find all solutions to $\cos \left(x-\frac{\pi}{2}\right)=0$.
6. Find all solutions to $\ln (x)+\ln (x-1)=1$.
7. Find all solutions to $\ln (2 x+1)=2-\ln (x)$.
8. Find all solutions to $2^{x-5}=3$.
9. Find all solutions to $e^{7-4 x}=6$.

Sequences

Topics Concerning Sequences

- computing terms of a sequence
- increasing / decreasing
- bounded
- convergence
- geometric sequences

Exercises Concerning Sequences

Consider the sequences $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty}$ defined by

$$
a_{n}=(-1)^{n}, \quad b_{n}=\left(\frac{2}{5}\right)^{n}, \quad c_{n}=\frac{3 n^{2}+5 n}{\sqrt{7 n^{4}+2}}
$$

1. Is $\left\{b_{n}\right\}_{n=0}^{\infty}$ increasing, decreasing, or neither?
2. Does $\left\{a_{n}\right\}_{n=0}^{\infty}$ converge? If so, to what?
3. Does $\left\{a_{n} b_{n}\right\}_{n=0}^{\infty}$ converge? If so, to what?
4. Does $\left\{c_{n}\right\}_{n=0}^{\infty}$ converge? If so, to what?
5. How many of these sequences are bounded?
6. Is $\left\{a_{n} b_{n}\right\}_{n=0}^{\infty}$ bounded? If so, by what?

More Exercises Concerning Sequences

1. What is a geometric sequence?
2. How can you tell if a geometric sequence converges?
3. What does it mean for a sequence to be bounded?
4. Are all bounded sequences convergent?
5. Are all convergent sequences bounded?

Trigonometry

Topics Concerning Trigonometry

- computing special values
- computing special inverse trig values
- drawing triangles to compute values and simplify expressions
- graphing $\sin (x), \cos (x), \tan (x)$ and their transformations
- graphing $\arcsin (x), \arccos (x), \arctan (x)$

Exercises Concerning Trigonometry

1. Simplify the expression $\tan (\arccos (1 / \sqrt{2}))$.
2. Simplify the expression $\cos (\arcsin (\sqrt{3} / 2))$.
3. Simplify the expression $\tan (\operatorname{arcsec}(x))$.
4. Simplify the expression $\tan (\arccos (x /(x+1)))$.
5. Graph the function $3 \sin (2(x-1))+3$.

More Exercises Concerning Trigonometry

1. https://math.dartmouth.edu/~m1f16/MATH1Docs/ TrigonometryReview.pdf

Limits

Topics Concerning Limits

- compute limits using graphs
- compute limits using algebraic manipulations
- compute limits in the definition of the derivative

Exercises Concerning Limits

Computing limits using the graph of a function...

Exercises Concerning Limits

1. Compute $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$.
2. Compute $\lim _{t \rightarrow \pi / 2}\left(\left(t-\frac{\pi}{2}\right) \sin (t)\right)$.
3. Let $f(x)=x^{2}-x$. Compute $f^{\prime}(x)$ using the limit definition.
4. Let $f(x)=\frac{x}{x-1}$. Compute $f^{\prime}(x)$ using the limit definition.

More Exercises Concerning Limits

1. Compute $\lim _{h \rightarrow 0} \frac{(-5+h)^{2}-25}{h}$
2. Compute $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
3. Compute $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+1}\right)$

Derivatives

Topics Concerning Derivatives

- use the limit definition to compute derivatives
- use derivative rules to compute derivatives
- use implicit differentiation to find derivatives
- use derivatives to find tangent lines

Exercises Concerning Derivatives

1. Let $f(x)=x^{2}-x$. Compute $f^{\prime}(x)$ using the limit definition.
2. Let $f(x)=\frac{x}{x-1}$. Compute $f^{\prime}(x)$ using the limit definition.
3. Compute $\frac{d}{d x}\left(x-e^{7}\right)$.
4. Compute $\frac{d}{d x}\left(x^{5}-x^{2}+3\right)$.
5. Compute $\frac{d}{d x}\left(\frac{\tan (x)}{1+\cos (x)}\right)$.
6. Find $\frac{d y}{d x}$ for the curve $x^{2}+x y+y^{2}=0$.
7. Find $\frac{d y}{d x}$ for the curve $\cos (x+y)=x^{2}+3 y$.
8. Find $\frac{d y}{d x}$ for the curve $\ln (y)=y^{3}+x^{3}$.

Exercises Concerning Derivatives

1. Suppose f^{-1} is the inverse of a differentiable function f and $f(4)=5, f^{\prime}(4)=2 / 3$. Find $\left(f^{-1}\right)^{\prime}(5)$.
2. Let $f(x)=x^{3}+3 \sin (x)+2 \cos (x)$ and $a=2$. Find $\left(f^{-1}\right)^{\prime}(a)$.
3. Compute $\frac{d}{d x}\left(\arctan \sqrt{x^{2}+5 x}\right)$.
4. Compute $\frac{d}{d x}\left(\log _{2}\left(\frac{2 x+1}{3 x^{2}-1}\right)\right)$.
5. Compute $\frac{d}{d x}\left(e^{\sqrt{x^{3}+3 x^{2}-2 x}}\right)$.
6. Compute $\frac{d}{d x}\left(3^{7 x+1}\right)$.
7. Compute $\frac{d}{d x}\left(x^{3} \arcsin \left(3 x^{2}\right)\right)$.

More Exercises Concerning Derivatives

1. Find the derivative of $a(x)=\frac{\left(x^{3}+5 x+1\right) \log \left(x^{2}\right)}{e^{2 x}}$.
2. Find the derivative of $b(x)=\sin \left(\frac{2^{x}}{x^{3}+x}\right)$.
3. Find the derivative of $c(x)=e^{x^{2} \cdot \cos (x)}$.
4. Find the derivative of $d(x)=\frac{\ln \left(x^{3}+3 x^{2}+3 x+1\right)}{\sin (x)}$.
5. Find the derivative of $f(x)=\ln (13 x+5)$.

6 . Find the derivative of $g(x)=e^{x} \cos (x)$.

More Exercises Concerning Derivatives

1. Find an equation of the tangent line to the curve $x^{2}-x y-y^{2}=1$ at the point $(2,1)$.
2. Find an equation of the tangent line to the curve $x^{2}-x y-y^{2}=1$ at the point $(-1,1)$.
3. Find an equation of the tangent line to the curve $x^{2}+2 x y+4 y^{2}=12$ at the point $(2,1)$.

Applications

Topics Concerning Applications

- Newton's method
- linearization
- Taylor polynomials

Exercises Concerning Applications

1. Let $f(x)=x^{4}-5 x^{2}+2 x-1$. Write a formula for x_{n+1} in terms of x_{n} using Newton's method. Simplify as much as possible.
2. Let $f(x)=x^{4}-5 x^{2}+2 x-1$ and $x_{0}=3$. Compute x_{1} using Newton's method.
3. Let $f(x)=\sin (x)$. Compute the linearization $L(x)$ at $a=0$.
4. Let $f(x)=\sin (x)$. Compute the degree 3 Taylor polynomial centered at 0 .

More Exercises Concerning Applications

1. Given a function $f(x)$ and a starting value x_{0}, state the formula to obtain x_{1} via Newton's method. What is the formula for x_{n+1} in terms of x_{n} ?
2. Given a function $f(x)$ and a real number a, state the formula for the degree 3 Taylor polynomial of f centered at a.
3. Compute the degree 3 Taylor polynomial of $f(x)=x^{3}-x$ centered at 0 .
4. Compute the degree 4 Taylor polynomial of $f(x)=e^{x}$ centered at 0 .

True/False

1. $\sin (x)$ is an even function.
2. $\sin (x)$ is an odd function.
3. e^{x} is an increasing function.
4. $\ln (x)$ is a decreasing function.
5. If $f(x)=(x-5)^{2}+3$, then f is one-to-one on $[-1,5]$.
6. If $f(x)=(x-5)^{2}+3$, then f is one-to-one on $[0,7]$.
7. The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
a_{n}=(-1)^{n}\left(\frac{7}{9}\right)^{n}
$$

is bounded.
2. The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
a_{n}=(-1)^{n}\left(\frac{7}{9}\right)^{n}
$$

is decreasing.
3. The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
a_{n}=(-1)^{n}\left(\frac{7}{9}\right)^{n}
$$

converges.

True/False

1. $\arctan (\cos (\pi / 2))=0$
2. $\arccos (\sin (2 \pi / 3))=\pi / 6$
3. $\arctan (-1)=\pi / 4$
4. $\arccos (\sin (\pi / 3))=\pi / 6$
5. $\arcsin (\sin (\pi))=\pi$
