

Math 1 Final Exam Review

Dartmouth College

The Last Week

Contents

Reminders/Announcements

Functions

Sequences

Trigonometry

Limits

Derivatives

Applications

 $\mathsf{True}/\mathsf{False}$

- The final exam date is Friday November 18th
- The final exam time it 11:30am 2:30pm
- The final exam location is Dartmouth Hall 105

Functions

- definitions of lots of types of functions
- even and odd functions
- continuity
- domain / range
- ▶ solve f(x) = 0
- inverse functions
- domain / range under transformations

Exercises Concerning Functions

- 1. Let f(x) = sin(x) and g(x) = arcsin(x). What are the domains and ranges of $f, g, f \circ g, g \circ f$?
- 2. Let $f(x) = x^2$ and $g(x) = \sqrt{x+1}$. What are the domains and ranges of $f, g, f \circ g, g \circ f$?
- 3. Find all solutions to $\ln(x+2) + \ln(x-2) = \ln(6)$.
- 4. Find all solutions to $2^{3x+1} = 4^x$.
- 5. Suppose f(x) is one-to-one and has domain [-2,3] and range [0,8]. Find the domain and range of -f(-x-1).
- Suppose f(x) is one-to-one and has domain [-2,3] and range [0,8]. Find the domain and range of 3f(2x + 1).
- 7. Suppose f(x) is one-to-one and has domain [-2,3] and range [0,8]. Find the domain and range of $4f^{-1}(-x) + 1$.

- 1. What is the definition of continuity? (It involves a limit)
- 2. Which trigonometric functions are continuous on \mathbb{R} ?
- 3. Is $f(x) = \frac{x^2 + x}{x^4}$ an even function?
- 4. Find all solutions to sin(x) = 0.
- 5. Find all solutions to $\cos\left(x \frac{\pi}{2}\right) = 0$.
- 6. Find all solutions to $\ln(x) + \ln(x-1) = 1$.
- 7. Find all solutions to $\ln(2x+1) = 2 \ln(x)$.
- 8. Find all solutions to $2^{x-5} = 3$.
- 9. Find all solutions to $e^{7-4x} = 6$.

Sequences

- computing terms of a sequence
- increasing / decreasing
- bounded
- convergence
- geometric sequences

Consider the sequences $\{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{c_n\}_{n=0}^{\infty}$ defined by

$$a_n = (-1)^n$$
, $b_n = \left(\frac{2}{5}\right)^n$, $c_n = \frac{3n^2 + 5n}{\sqrt{7n^4 + 2}}$

1. Is $\{b_n\}_{n=0}^{\infty}$ increasing, decreasing, or neither?

- 2. Does $\{a_n\}_{n=0}^{\infty}$ converge? If so, to what?
- 3. Does $\{a_n b_n\}_{n=0}^{\infty}$ converge? If so, to what?
- 4. Does $\{c_n\}_{n=0}^{\infty}$ converge? If so, to what?
- 5. How many of these sequences are bounded?
- 6. Is $\{a_n b_n\}_{n=0}^{\infty}$ bounded? If so, by what?

- 1. What is a geometric sequence?
- 2. How can you tell if a geometric sequence converges?
- 3. What does it mean for a sequence to be bounded?
- 4. Are all bounded sequences convergent?
- 5. Are all convergent sequences bounded?

Trigonometry

- computing special values
- computing special inverse trig values
- drawing triangles to compute values and simplify expressions
- graphing sin(x), cos(x), tan(x) and their transformations
- graphing arcsin(x), arccos(x), arctan(x)

- 1. Simplify the expression $\tan(\arccos(1/\sqrt{2}))$.
- 2. Simplify the expression $\cos(\arcsin(\sqrt{3}/2))$.
- 3. Simplify the expression tan(arcsec(x)).
- 4. Simplify the expression tan(arccos(x/(x+1))).
- 5. Graph the function $3\sin(2(x-1)) + 3$.

More Exercises Concerning Trigonometry

 https://math.dartmouth.edu/~m1f16/MATH1Docs/ TrigonometryReview.pdf

Limits

- compute limits using graphs
- compute limits using algebraic manipulations
- compute limits in the definition of the derivative

Exercises Concerning Limits

Computing limits using the graph of a function...

- 1. Compute $\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$ 2. Compute $\lim_{x\to 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
- 3. Compute $\lim_{t\to 0} \left(\frac{1}{t} \frac{1}{t^2+1}\right)$

Derivatives

- use the limit definition to compute derivatives
- use derivative rules to compute derivatives
- use implicit differentiation to find derivatives
- use derivatives to find tangent lines

- 1. Let $f(x) = x^2 x$. Compute f'(x) using the limit definition.
- 2. Let $f(x) = \frac{x}{x-1}$. Compute f'(x) using the limit definition.
- 3. Compute $\frac{d}{dx}(x-e^7)$.
- 4. Compute $\frac{d}{dx}(x^5 x^2 + 3)$.
- 5. Compute $\frac{d}{dx}\left(\frac{\tan(x)}{1+\cos(x)}\right)$.
- 6. Find $\frac{dy}{dx}$ for the curve $x^2 + xy + y^2 = 0$.
- 7. Find $\frac{dy}{dx}$ for the curve $\cos(x + y) = x^2 + 3y$.
- 8. Find $\frac{dy}{dx}$ for the curve $\ln(y) = y^3 + x^3$.

1. Suppose f^{-1} is the inverse of a differentiable function f and f(4) = 5, f'(4) = 2/3. Find $(f^{-1})'(5)$. 2. Let $f(x) = x^3 + 3\sin(x) + 2\cos(x)$ and a = 2. Find $(f^{-1})'(a)$. 3. Compute $\frac{d}{dx}$ (arctan $\sqrt{x^2 + 5x}$). 4. Compute $\frac{d}{dx} \left(\log_2 \left(\frac{2x+1}{3x^2-1} \right) \right)$. 5. Compute $\frac{d}{dx}\left(e^{\sqrt{x^3+3x^2-2x}}\right)$. 6. Compute $\frac{d}{dx}$ (3^{7x+1}). 7. Compute $\frac{d}{dx}(x^3 \arcsin(3x^2))$.

More Exercises Concerning Derivatives

- 1. Find the derivative of $a(x) = \frac{(x^3+5x+1)\log(x^2)}{e^{2x}}$.
- 2. Find the derivative of $b(x) = \sin\left(\frac{2^{x}}{x^{3}+x}\right)$.
- 3. Find the derivative of $c(x) = e^{x^2 \cdot \cos(x)}$.
- 4. Find the derivative of $d(x) = \frac{\ln(x^3+3x^2+3x+1)}{\sin(x)}$.
- 5. Find the derivative of $f(x) = \ln(13x + 5)$.
- 6. Find the derivative of $g(x) = e^x \cos(x)$.

- 1. Find an equation of the tangent line to the curve $x^2 xy y^2 = 1$ at the point (2, 1).
- 2. Find an equation of the tangent line to the curve $x^2 xy y^2 = 1$ at the point (-1, 1).
- 3. Find an equation of the tangent line to the curve $x^2 + 2xy + 4y^2 = 12$ at the point (2, 1).

Applications

- Newton's method
- linearization
- Taylor polynomials

- 1. Let $f(x) = x^4 5x^2 + 2x 1$. Write a formula for x_{n+1} in terms of x_n using Newton's method. Simplify as much as possible.
- 2. Let $f(x) = x^4 5x^2 + 2x 1$ and $x_0 = 3$. Compute x_1 using Newton's method.
- 3. Let $f(x) = \sin(x)$. Compute the linearization L(x) at a = 0.
- Let f(x) = sin(x). Compute the degree 3 Taylor polynomial centered at 0.

- Given a function f(x) and a starting value x₀, state the formula to obtain x₁ via Newton's method. What is the formula for x_{n+1} in terms of x_n?
- 2. Given a function f(x) and a real number a, state the formula for the degree 3 Taylor polynomial of f centered at a.
- 3. Compute the degree 3 Taylor polynomial of $f(x) = x^3 x$ centered at 0.
- 4. Compute the degree 4 Taylor polynomial of $f(x) = e^x$ centered at 0.

$\mathsf{True}/\mathsf{False}$

- 1. sin(x) is an even function.
- 2. sin(x) is an odd function.
- 3. e^x is an increasing function.
- 4. $\ln(x)$ is a decreasing function.

5. If $f(x) = (x-5)^2 + 3$, then f is one-to-one on [-1, 5].

6. If $f(x) = (x - 5)^2 + 3$, then f is one-to-one on [0, 7].

True/False

1. The sequence
$$\{a_n\}_{n=0}^{\infty}$$
 defined by

$$\mathsf{a}_n = (-1)^n \left(\frac{7}{9}\right)^n$$

is bounded.

2. The sequence $\{a_n\}_{n=0}^{\infty}$ defined by

$$a_n = (-1)^n \left(\frac{7}{9}\right)^n$$

is decreasing.

3. The sequence $\{a_n\}_{n=0}^{\infty}$ defined by

$$a_n = (-1)^n \left(\frac{7}{9}\right)^n$$

converges.

- 1. $\arctan(\cos(\pi/2)) = 0$
- 2. $\arccos(\sin(2\pi/3)) = \pi/6$
- 3. $\arctan(-1) = \pi/4$
- 4. $\arccos(\sin(\pi/3)) = \pi/6$
- 5. $\arcsin(\sin(\pi)) = \pi$