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Reminders/Announcements

> Last written HW due today!

» WebWork due Friday (Taylor Polys) and Monday (Misc
Review)

> All written work will be returned by the end of this week and
thus all grades except for the final will be available Monday

» Final Exam Review during x-hour, Friday, and Monday (Do we
want another review during the reading period?)

> Look for an email later today with information regarding the
final exam

> I'm putting together a comprehensive review document which
will be available at the following link:
https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-27-Slides-11-11-Fri.pdf


https://math.dartmouth.edu/~m1f16/MATH1Docs/Musty-Lecture-27-Slides-11-11-Fri.pdf
https://math.dartmouth.edu/~m1f16/MATH1Docs/Musty-Lecture-27-Slides-11-11-Fri.pdf

This Week

» Linear Approximations (Monday)
» Taylor Polynomials (Wednesday)

» Exam Review (Thursday, Friday, following Monday, and
possibly more during reading period)
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Taylor Polynomials

Consider a function f and a real number a in the domain of f.
We've seen how to find a linear function that best approximates f
near a. Suppose instead we allow for higher degree polynomials in
our approximation. . .

Given a function f differentiable in an interval containing the real
number a, we define the degree n Taylor polynomial of f
centered at a as follows:

fl;(!a) (x—a)P’+-+ f(':!(a) (x —a)"

To(x) = f(a) + f'(a)(x — a) +

where nl =1-2-3---nis the nth factorial function.

Notice that the linearization of f at a is simply T1(x).
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Example

Let f(x) =sin(x) and a = 0. Find T7(x).

Solution:

(0 £ (o
T7(X):f(0)+f,(0)x+%xz++ 7|( ) 7
— X2 x5 X
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Example

Let f(x) = cos(x) and a = 0. Find Tg(x).
Solution:

To() = £(0) + (O + g F0(0) 4
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ff(x




Taylor Polynomial Approximations

ff(x =e

Ti(x) =1+ x




Taylor Polynomial Approximations

y s
A
f(x) = e~
3 ;TE(X)ZHX.X;
Ti(x) =1+ x




Taylor Polynomial Approximations
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Taylor Polynomial Approximations
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Taylor Polynomial Approximations

\ \ f(x) = sin(x)




Taylor Polynomial Approximations

T

> X

f(x) = sin(x)




Taylor Polynomial Approximations

\ T1(x) = x
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Taylor Polynomial Approximations

\ T1(x) = x
O\ N
&& \ \ f(x) = sin(x)




Taylor Polynomial Approximations

\ T3(x) = x — X—T
sin(x) = lim T,(x) = f: ixz""‘1 for all x
n—oo =0 (2n —+ 1)'
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> f(x) = arctan(x)
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T

x) = arctan(x)
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Taylor Polynomial Approximations
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Taylor Polynomial Approximations
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2 (sin(x)) = cos(x)

Suppose we follow the suggestive pattern from the previous NS
slides and write
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j (sin(x)) = cos(x)

Suppose we follow the suggestive pattern from the previous NG
slides and write

O I T
2 4 6
x> x* x
~l—— 4+ —— —
cos(x) > T 6'+

Then

3! 5! 7!
~1 3x2  5x*  7x
T3 sl

x2  x* X
~l——+———+
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(sin(x)) = cos(x)

Suppose we follow the suggestive pattern from the previous 60
slides and write

N x3 x5 X
sin() M x—grt gt
2 4 6
x*  x* x
~l——+4+———
cos(x) > T a6 +

Then

Slesrter o
~1 X2 X4 X6
S TR TR

and all of this can be made precise using infinite series.



Examish Exercises

)

2. Find Ta(x) for the following:
(a) fF(x)=x>+2x3+x,a=2
(b) f(x)=¢e>*,a=3
(c) f(x)=sin(x), a=m
(d) f(x)=+vx, a=16
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