Math 1 Lecture 26

Dartmouth College

Wednesday 11-09-16

Contents

Reminders/Announcements

This Week

Taylor Polynomials

Taylor Polynomial Approximations

Examish Exercises

Reminders/Announcements

- Last written HW due today!
- WebWork due Friday (Taylor Polys) and Monday (Misc Review)
- All written work will be returned by the end of this week and thus all grades except for the final will be available Monday
- Final Exam Review during x-hour, Friday, and Monday (Do we want another review during the reading period?)
- Look for an email later today with information regarding the final exam
- I'm putting together a comprehensive review document which will be available at the following link:
https://math.dartmouth.edu/~m1f16/MATH1Docs/
Musty-Lecture-27-Slides-11-11-Fri.pdf
- Linear Approximations (Monday)
- Taylor Polynomials (Wednesday)
- Exam Review (Thursday, Friday, following Monday, and possibly more during reading period)

Taylor Polynomials

Consider a function f and a real number a in the domain of f.

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a.

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a. Suppose instead we allow for higher degree polynomials in our approximation...

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a. Suppose instead we allow for higher degree polynomials in our approximation...

Given a function f differentiable in an interval containing the real number a, we define the degree n Taylor polynomial of f centered at a as follows:

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a. Suppose instead we allow for higher degree polynomials in our approximation...

Given a function f differentiable in an interval containing the real number a, we define the degree n Taylor polynomial of f centered at a as follows:

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a. Suppose instead we allow for higher degree polynomials in our approximation...

Given a function f differentiable in an interval containing the real number a, we define the degree n Taylor polynomial of f centered at a as follows:

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where $n!=1 \cdot 2 \cdot 3 \cdots n$ is the nth factorial function.

Taylor Polynomials

Consider a function f and a real number a in the domain of f. We've seen how to find a linear function that best approximates f near a. Suppose instead we allow for higher degree polynomials in our approximation...

Given a function f differentiable in an interval containing the real number a, we define the degree n Taylor polynomial of f centered at a as follows:

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where $n!=1 \cdot 2 \cdot 3 \cdots n$ is the nth factorial function.
Notice that the linearization of f at a is simply $T_{1}(x)$.

Example

Let $f(x)=\sin (x)$ and $a=0$. Find $T_{7}(x)$.

Example

Let $f(x)=\sin (x)$ and $a=0$. Find $T_{7}(x)$.
Solution:

$$
\begin{aligned}
T_{7}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{f^{(7)}(0)}{7!} x^{7} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
\end{aligned}
$$

Example

Let $f(x)=\cos (x)$ and $a=0$. Find $T_{6}(x)$.

Example

Let $f(x)=\cos (x)$ and $a=0$. Find $T_{6}(x)$.

Solution:

$$
\begin{aligned}
T_{6}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{f^{(6)}(0)}{6!} x^{6} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
\end{aligned}
$$

Taylor Polynomial Approximations

$$
e^{x}=\lim _{n \rightarrow \infty} T_{n}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \quad \text { for all } x
$$

Taylor Polynomial Approximations

$$
\sin (x)=\lim _{n \rightarrow \infty} T_{n}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \text { for all } x
$$

Taylor Polynomial Approximations

Taylor Polynomial Approximations

Taylor Polynomial Approximations

Taylor Polynomial Approximations

Taylor Polynomial Approximations

$\arctan (x)=\lim _{n \rightarrow \infty} T_{n}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad$ for $-1<x<1$

$\frac{d}{d x}(\sin (x))=\cos (x)$

Suppose we follow the suggestive pattern from the previous slides and write

$$
\begin{aligned}
& \sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \cos (x) \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

$\frac{d}{d x}(\sin (x))=\cos (x)$

Suppose we follow the suggestive pattern from the previous slides and write

$$
\begin{aligned}
& \sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \cos (x) \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d}{d x}(\sin (x)) & \approx \frac{d}{d x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\right) \\
& \approx 1-\frac{3 x^{2}}{3!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7!}+\ldots \\
& \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

$\frac{d}{d x}(\sin (x))=\cos (x)$

Suppose we follow the suggestive pattern from the previous slides and write

$$
\begin{aligned}
& \sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \cos (x) \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d}{d x}(\sin (x)) & \approx \frac{d}{d x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\right) \\
& \approx 1-\frac{3 x^{2}}{3!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7!}+\ldots \\
& \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

and all of this can be made precise using infinite series.

Examish Exercises

1. For the following assume $a=0$ and find $T_{3}(x)$:
(a) $f(x)=\frac{1}{1-x}$
(b) $f(x)=e^{x}$
(c) $f(x)=\ln (1+x)$
(d) $f(x)=x e^{x}$
2. Find $T_{4}(x)$ for the following:
(a) $f(x)=x^{5}+2 x^{3}+x, a=2$
(b) $f(x)=e^{2 x}, a=3$
(c) $f(x)=\sin (x), a=\pi$
(d) $f(x)=\sqrt{x}, a=16$
