Math 1 Lecture 25

Dartmouth College

Monday 11-07-16

Contents

Reminders/Announcements

This Week

Approximating Functions

Linearization

Examish Exercises

Reminders/Announcements

- Last Quiz today!
- Last written HW due Wednesday!
- WebWork due Wednesday. . . but not the last one ©
- Linear Approximations (Monday)
- Taylor Polynomials (Wednesday)
- Taylor Polynomial Approximations (Friday)

Approximating Functions

In the wild, functions can be complicated and unwieldy...

Approximating Functions

In the wild, functions can be complicated and unwieldy... and scary! :i

Approximating Functions

In the wild, functions can be complicated and unwieldy... and scary! :i

This week we will explore two techniques to approximate potentially scary functions with a friendlier version.

Approximating Functions

In the wild, functions can be complicated and unwieldy... and scary! :i

This week we will explore two techniques to approximate potentially scary functions with a friendlier version.

- Linearization: Approximation with a line
- Taylor Polynomials: Approximation with a polynomial

Approximating Functions

In the wild, functions can be complicated and unwieldy... and scary! :i

This week we will explore two techniques to approximate potentially scary functions with a friendlier version.

- Linearization: Approximation with a line
- Taylor Polynomials: Approximation with a polynomial

Sounds simple...

Linearization

What is the best linear approximation of $f(x)$ near a ?

Linearization

What is the best linear approximation of $f(x)$ near a ? Well the tangent line of course!

Linearization

What is the best linear approximation of $f(x)$ near a ? Well the tangent line of course!

More formally, given a function f and a real number a, we define the linearization of f at a by the linear function:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example

Let $f(x)=\sqrt{x+3}$ and $a=1$. Use the linearization of f at 1 to approximate $f(0.98)$ and $f(1.05)$.

Example

Let $f(x)=\sqrt{x+3}$ and $a=1$. Use the linearization of f at 1 to approximate $f(0.98)$ and $f(1.05)$.

Solution:

Firstly,

$$
L(x)=f(1)+f^{\prime}(1)(x-1)=2+\frac{1}{4}(x-1)
$$

and for x near 1 we can approximate $f(x)$ with $L(x)$.

Example

Let $f(x)=\sqrt{x+3}$ and $a=1$. Use the linearization of f at 1 to approximate $f(0.98)$ and $f(1.05)$.

Solution:

Firstly,

$$
L(x)=f(1)+f^{\prime}(1)(x-1)=2+\frac{1}{4}(x-1)
$$

and for x near 1 we can approximate $f(x)$ with $L(x)$. Specifically,

$$
\begin{aligned}
& f(0.98)=\sqrt{3.98} \approx L(0.98)=2+\frac{1}{4}(0.98-1)=1.995 \\
& f(1.05)=\sqrt{4.05} \approx L(1.05)=2+\frac{1}{4}(1.05-1)=2.0125
\end{aligned}
$$

Example

Let $f(x)=\sin (x)$ and $a=0$. Find the linearization of f at 0 .

Example

Let $f(x)=\sin (x)$ and $a=0$. Find the linearization of f at 0 .

Solution:

We have,

$$
L(x)=f(0)+f^{\prime}(0)(x-0)=0+1(x-0)=x
$$

Example

Let $f(x)=\sin (x)$ and $a=0$. Find the linearization of f at 0 .

Solution:

We have,

$$
L(x)=f(0)+f^{\prime}(0)(x-0)=0+1(x-0)=x
$$

So when x is near $0, \sin (x) \approx x$.

Example

Let $f(x)=\sin (x)$ and $a=0$. Find the linearization of f at 0 .

Solution:

We have,

$$
L(x)=f(0)+f^{\prime}(0)(x-0)=0+1(x-0)=x
$$

So when x is near $0, \sin (x) \approx x$. This approximation is used in deriving the formula

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

for the period of a pendulum of length L.

Examish Exercises

1. Find the linearization of f at a :
(a) $f(x)=x^{3}-x^{2}+3, a=-2$
(b) $f(x)=\sin (x), a=\pi / 6$
(c) $f(x)=\sqrt{x}, a=4$
(d) $f(x)=\frac{2}{\sqrt{x^{2}-5}}, a=3$
2. Use the linearization of f at a to approximate:
(a) $(1.999)^{4}$
(b) $\sqrt[3]{1001}$
(c) $\frac{1}{4.002}$
(d) $\sqrt{100.5}$
