Math 1 Lecture 24

Dartmouth College

Friday 11-04-16

Contents

Reminders/Announcements

Topics This Week

Newton's Method

Examish Exercises and Review

Reminders/Announcements

- Last Quiz Monday!
- Last written HW due Wednesday!
- WebWork due Monday. . . but not the last one ©

A Week in the Life

- Implicit differentiation
- $\left(f^{-1}\right)^{\prime}(a)=1 / f^{\prime}\left(f^{-1}(a)\right)$
- Derivatives of inverse trigonometric functions
- Derivatives of logarithmic and exponential functions
- Logarithmic differentiation
- Newton's Method (today)

Newton's Method

Given a function $f(x)$ and a starting value x_{0}, Newton's method ${ }^{\text {i7 }}$ produces a sequence of real numbers

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

such that (in most cases... but not alwaysG鬼)

$$
\lim _{n \rightarrow \infty} x_{n}=\zeta
$$

where ζ satisfies $f(\zeta)=0$.

Newton's Method

Given a function $f(x)$ and a starting value x_{0}, Newton's method ${ }^{17}$ produces a sequence of real numbers

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

such that (in most cases. . . but not alwaysG选)

$$
\lim _{n \rightarrow \infty} x_{n}=\zeta
$$

where ζ satisfies $f(\zeta)=0$. That is, Newton's method produces a sequence that converges to a root of f.

Newton's Method

Given a function $f(x)$ and a starting value x_{0}, Newton's method ${ }^{\text {i }}$ produces a sequence of real numbers

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

such that (in most cases... but not alwaysG鬼)

$$
\lim _{n \rightarrow \infty} x_{n}=\zeta
$$

where ζ satisfies $f(\zeta)=0$. That is, Newton's method produces a sequence that converges to a root of f.
The x_{n} are computed inductively by the formula:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

Newton's Method

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$.

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ?

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard.

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ?

Newton＇s Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$ ．What are the roots of f ？Too hard．What is one root of f ？Still too hard G⿴囗大⺀⿺辶

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G匋. OK, can we just approximate one root of f ?

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G包. OK, can we just approximate one root of f ? Yes! Using Newton ©

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G包. OK, can we just approximate one root of f ? Yes! Using Newton ©
f has a root $\zeta \in[0,1]$.

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G包. OK, can we just approximate one root of f ? Yes! Using Newton ©
f has a root $\zeta \in[0,1]$. How do we know this?

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G因. OK, can we just approximate one root of f ? Yes! Using Newton ©
f has a root $\zeta \in[0,1]$. How do we know this? Since f is continuous and

$$
\begin{aligned}
& f(0)=0-0+\cos (0)=1>0 \\
& f(1)=1-2+\cos (1)=-1+\cos (1)<0
\end{aligned}
$$

by the intermediate value theorem (oh yeah that thing), f has a root (call it ζ) in the interval $[0,1]$.

Newton's Method

Consider the function $f(x)=x^{6}-2 x+\cos (x)$. What are the roots of f ? Too hard. What is one root of f ? Still too hard G团. OK, can we just approximate one root of f ? Yes! Using Newton ©
f has a root $\zeta \in[0,1]$. How do we know this? Since f is continuous and

$$
\begin{aligned}
& f(0)=0-0+\cos (0)=1>0 \\
& f(1)=1-2+\cos (1)=-1+\cos (1)<0
\end{aligned}
$$

by the intermediate value theorem (oh yeah that thing), f has a root (call it ζ) in the interval $[0,1]$.

We can approximate ζ using Newton's method. . .

Newton's Method

Input:

- $f(x)=x^{6}-2 x+\cos (x)$
- $x_{0}=0.8$

Output:

- a sequence $x_{0}, x_{1}, x_{2}, \ldots$

Newton's Method

Setup:

- $f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x)$
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8$

Newton's Method

Setup:

$$
\begin{aligned}
& \Rightarrow f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x) \\
& -x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8
\end{aligned}
$$

Compute x_{1} :

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =x_{0}-\frac{x_{0}^{6}-2 x_{0}+\cos \left(x_{0}\right)}{6 x_{0}^{5}-2-\sin \left(x_{0}\right)} \\
& =0.8-\frac{(0.8)^{6}-2(0.8)+\cos (0.8)}{6(0.8)^{5}-2-\sin (0.8)} \\
& =-0.053413676302635 \ldots
\end{aligned}
$$

Newton's Method

Setup:

- $f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x)$
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8, x_{1}=-0.05341 \ldots$

Newton's Method

Setup:

$$
\begin{aligned}
& f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x) \\
& \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8, x_{1}=-0.05341 \ldots
\end{aligned}
$$

Compute x_{2} :

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =x_{1}-\frac{x_{1}^{6}-2 x_{1}+\cos \left(x_{1}\right)}{6 x_{1}^{5}-2-\sin \left(x_{1}\right)} \\
& =(-0.05 \ldots)-\frac{(-0.05 \ldots)^{6}-2(-0.05 \ldots)+\cos (-0.05 \ldots)}{6(-0.05 \ldots)^{5}-2-\sin (-0.05 \ldots)} \\
& =0.51444467609636 \ldots
\end{aligned}
$$

Newton's Method

Newton's Method

Newton's Method

Setup:

- $f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x)$
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8$

Newton's Method

Setup:

- $f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x)$
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8$

Output:

$$
\begin{aligned}
& x_{0}=0.8 \\
& x_{1}=-0.053413676302635 \ldots \\
& x_{2}=0.51444467609636662 \ldots \\
& x_{3}=0.45302317018786617 \ldots \\
& x_{4}=0.45376603716125518 \ldots \\
& x_{5}=0.45376608079371134 \ldots \\
& x_{6}=0.45376608079371149 \ldots
\end{aligned} \quad \begin{aligned}
& \\
& x_{6}
\end{aligned} \quad 7 \text { decimal places }
$$

Newton's Method

Setup:

$$
\begin{aligned}
& f(x)=x^{6}-2 x+\cos (x), \quad f^{\prime}(x)=6 x^{5}-2-\sin (x) \\
& \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0}=0.8
\end{aligned}
$$

Output:

$$
\begin{aligned}
& x_{0}=0.8 \\
& x_{1}=-0.053413676302635 \ldots \\
& x_{2}=0.51444467609636662 \ldots \\
& x_{3}=0.45302317018786617 \ldots \\
& x_{4}=0.45376603716125518 \ldots \\
& x_{5}=0.45376608079371134 \ldots \\
& x_{6}=0.45376608079371149 \ldots
\end{aligned} \quad \begin{aligned}
& \\
& x_{6}
\end{aligned} \quad 7 \text { decimal places } \quad 15 \text { decimal places }
$$

https://goo.gl/KLQPjK

Practice Quiz (10 minutes)

1. Consider the implicit function

$$
y^{4}-53=\frac{1}{2} x^{3}+5 x
$$

(a) What is $\frac{d y}{d x}$?
(b) What is the slope of the tangent line at the point $x=-4$, $y=1$?
2. Consider the function

$$
f(x)=\ln (x-3)
$$

(a) What is $f^{\prime}(x)$?
(b) What is the domain of $f^{\prime}(x)$ as an interval?

Examish Exercises

1. Let $f(x)=x^{7}+4$ and $x_{0}=-1$. Compute x_{1} and x_{2} using Newton's method.

Solution:

https://goo.gl/V2kOyU
2. Approximate $\sqrt[4]{75}$ to eight decimal places using Newton's method.

Solution:

https://goo.gl/Te5YjK

Examish (Mon)

1. Find $\frac{d y}{d x}$ for the equation $y^{2}=x^{3}-x$.
2. Find $\frac{d y}{d x}$ for the equation $x^{3}+y^{3}=6 x y$.
3. Find y^{\prime} for the equation $\sin (x+y)=y^{2} \cos (x)$.
4. Find the equation of the tangent line to the curve $x^{2}-x y-y^{2}=1$ at the point $(2,1)$.
5. Find the equation of the tangent line to the curve $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ at the point $(0,1 / 2)$.
6. Find the equation of the tangent line to the curve $x^{2 / 3}+y^{2 / 3}=4$ at the point $(-3 \sqrt{3}, 1)$.

Examish (Mon)

1. Let $f(x)=3 x^{3}+4 x^{2}+6 x+5$ and $a=5$. Find $\left(f^{-1}\right)^{\prime}(a)$.
2. Let $f(x)=x^{3}+3 \sin (x)+2 \cos (x)$ and $a=2$. Find $\left(f^{-1}\right)^{\prime}(a)$.
3. Let $f(x)=\sqrt{x^{3}+4 x+4}$ and $a=3$. Find $\left(f^{-1}\right)^{\prime}(a)$.
4. Suppose f^{-1} is the inverse function of a differentiable function f and $f(4)=5, f^{\prime}(4)=2 / 3$. Find $\left(f^{-1}\right)^{\prime}(5)$.

Examish (Mon)

1. Find the derivative of $y=x \arcsin (x)+\sqrt{1-x^{2}}$.
2. Find the derivative of $y=\arctan \sqrt{\frac{1-x}{1+x}}$.
3. Find the derivative of $f(\theta)=\arctan (\cos (\theta))$.
4. Find y^{\prime} if $\arctan \left(x^{2} y\right)=x+x y^{2}$.

Examish (Wed)

Find the derivative of each function and the domain on which it is valid.

$$
\begin{aligned}
& \text { 1. } y=\ln (x+5) \\
& \text { 2. } y=\ln |x+5|
\end{aligned}
$$

Examish (Wed)

1. $f(x)=x \ln x-x$
2. $f(x)=\sin (\ln x)$
3. $y=\ln \frac{1}{x}$
4. $g(x)=\ln \left(x e^{-2 x}\right)$
5. $f(x)=\log _{10} x$
6. $h(x)=\log _{10} \sqrt{x}$
7. $y=2^{x}$
8. $y=5^{2 x+1}$
9. $y=\left(x^{2}+2\right)^{2}\left(x^{4}+4\right)^{4}$
10. $y=(2 x+1)^{x}$
