

Math 1 Lecture 24

Dartmouth College

Friday 11-04-16

Reminders/Announcements

Topics This Week

Newton's Method

Examish Exercises and Review

- Last Quiz Monday!
- Last written HW due Wednesday!
- WebWork due Monday... but not the last one O

Implicit differentiation

•
$$(f^{-1})'(a) = 1/f'(f^{-1}(a))$$

- Derivatives of inverse trigonometric functions
- Derivatives of logarithmic and exponential functions
- Logarithmic differentiation
- Newton's Method (today)

Given a function f(x) and a starting value x_0 , **Newton's method** produces a sequence of real numbers

 x_0, x_1, x_2, \dots

such that (in most cases... but not always \mathbb{R})

$$\lim_{n\to\infty}x_n=\zeta$$

where ζ satisfies $f(\zeta) = 0$.

Given a function f(x) and a starting value x_0 , **Newton's method** produces a sequence of real numbers

 x_0, x_1, x_2, \ldots

such that (in most cases... but not always ℜ)

 $\lim_{n\to\infty} x_n = \zeta$

where ζ satisfies $f(\zeta) = 0$. That is, Newton's method produces a sequence that converges to a **root** of f.

Given a function f(x) and a starting value x_0 , **Newton's method** produces a sequence of real numbers

 x_0, x_1, x_2, \ldots

such that (in most cases... but not always ℜ)

$$\lim_{n\to\infty}x_n=\zeta$$

where ζ satisfies $f(\zeta) = 0$. That is, Newton's method produces a sequence that converges to a **root** of *f*. The x_n are computed inductively by the formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Consider the function $f(x) = x^6 - 2x + \cos(x)$.

Consider the function $f(x) = x^6 - 2x + \cos(x)$. What are the roots of f?

Consider the function $f(x) = x^6 - 2x + \cos(x)$. What are the roots of f? Too hard.

Consider the function $f(x) = x^6 - 2x + \cos(x)$. What are the roots of f? Too hard. What is one root of f?

Consider the function $f(x) = x^6 - 2x + \cos(x)$. What are the roots of f? Too hard. What is one root of f? Still too hard SE.

f has a root $\zeta \in [0,1]$.

f has a root $\zeta \in [0,1]$. How do we know this?

f has a root $\zeta \in [0,1].$ How do we know this? Since f is continuous and

$$egin{aligned} f(0) &= 0 - 0 + \cos(0) = 1 > 0 \ f(1) &= 1 - 2 + \cos(1) = -1 + \cos(1) < 0, \end{aligned}$$

by the intermediate value theorem (oh yeah that thing), f has a root (call it ζ) in the interval [0, 1].

f has a root $\zeta \in [0,1].$ How do we know this? Since f is continuous and

$$egin{aligned} f(0) &= 0 - 0 + \cos(0) = 1 > 0 \ f(1) &= 1 - 2 + \cos(1) = -1 + \cos(1) < 0, \end{aligned}$$

by the intermediate value theorem (oh yeah that thing), f has a root (call it ζ) in the interval [0, 1].

We can approximate ζ using Newton's method...

Input:

f(*x*) = *x*⁶ − 2*x* + cos(*x*)
 *x*₀ = 0.8

Output:

• a sequence x_0, x_1, x_2, \ldots

1769

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8$

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8$

Compute x_1 :

$$\begin{aligned} x_1 &= x_0 - \frac{f(x_0)}{f'(x_0)} \\ &= x_0 - \frac{x_0^6 - 2x_0 + \cos(x_0)}{6x_0^5 - 2 - \sin(x_0)} \\ &= 0.8 - \frac{(0.8)^6 - 2(0.8) + \cos(0.8)}{6(0.8)^5 - 2 - \sin(0.8)} \\ &= -0.053413676302635 \dots \end{aligned}$$

1769

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8, x_1 = -0.05341...$

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8, x_1 = -0.05341...$

Compute *x*₂:

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

= $x_{1} - \frac{x_{1}^{6} - 2x_{1} + \cos(x_{1})}{6x_{1}^{5} - 2 - \sin(x_{1})}$
= $(-0.05...) - \frac{(-0.05...)^{6} - 2(-0.05...) + \cos(-0.05...)}{6(-0.05...)^{5} - 2 - \sin(-0.05...)}$

0.51444407009030...

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8$

Setup:

•
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

• $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8$

Output:

$$\begin{array}{l} x_0 = 0.8 \\ x_1 = -0.053413676302635 \dots \\ x_2 = 0.51444467609636662 \dots \\ x_3 = 0.45302317018786617 \dots \\ x_4 = 0.45376603716125518 \dots \\ x_5 = 0.45376608079371134 \dots \end{array}$$

 $x_6 = 0.45376608079371149\ldots$

3 decimal places

- 7 decimal places
- 15 decimal places

Setup:

►
$$f(x) = x^6 - 2x + \cos(x), \quad f'(x) = 6x^5 - 2 - \sin(x)$$

► $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad x_0 = 0.8$

Output:

$$\begin{aligned} x_0 &= 0.8 \\ x_1 &= -0.053413676302635 \dots \\ x_2 &= 0.51444467609636662 \dots \\ x_3 &= 0.45302317018786617 \dots \\ x_4 &= 0.45376603716125518 \dots \\ x_5 &= 0.45376608079371134 \dots \\ x_6 &= 0.45376608079371149 \dots \end{aligned}$$

https://goo.gl/KLQPjK

- 7 decimal places
- 15 decimal places

 $1. \ \ Consider \ the \ implicit \ function$

$$y^4 - 53 = \frac{1}{2}x^3 + 5x.$$

- (a) What is dy/dx?
 (b) What is the slope of the tangent line at the point x = -4, y = 1?
- 2. Consider the function

$$f(x) = \ln(x-3).$$

1. Let $f(x) = x^7 + 4$ and $x_0 = -1$. Compute x_1 and x_2 using Newton's method.

Solution:

https://goo.gl/V2kOyU

2. Approximate $\sqrt[4]{75}$ to eight decimal places using Newton's method.

Solution:

https://goo.gl/Te5YjK

- 1. Find $\frac{dy}{dx}$ for the equation $y^2 = x^3 x$.
- 2. Find $\frac{dy}{dx}$ for the equation $x^3 + y^3 = 6xy$.
- 3. Find y' for the equation $sin(x + y) = y^2 cos(x)$.
- 4. Find the equation of the tangent line to the curve $x^2 xy y^2 = 1$ at the point (2, 1).
- 5. Find the equation of the tangent line to the curve $x^2 + y^2 = (2x^2 + 2y^2 x)^2$ at the point (0, 1/2).
- 6. Find the equation of the tangent line to the curve $x^{2/3} + y^{2/3} = 4$ at the point $\left(-3\sqrt{3}, 1\right)$.

function f and f(4) = 5, f'(4) = 2/3. Find $(f^{-1})'(5)$.

- 1. Find the derivative of $y = x \arcsin(x) + \sqrt{1 x^2}$.
- 2. Find the derivative of $y = \arctan \sqrt{\frac{1-x}{1+x}}$.
- 3. Find the derivative of $f(\theta) = \arctan(\cos(\theta))$.
- 4. Find y' if $\arctan(x^2y) = x + xy^2$.

Find the derivative of each function and the domain on which it is valid.

1.
$$y = \ln(x+5)$$

2. $y = \ln |x+5|$

Examish (Wed)

1.
$$f(x) = x \ln x - x$$

2. $f(x) = \sin(\ln x)$
3. $y = \ln \frac{1}{x}$
4. $g(x) = \ln(xe^{-2x})$
5. $f(x) = \log_{10} x$
6. $h(x) = \log_{10} \sqrt{x}$
7. $y = 2^{x}$
8. $y = 5^{2x+1}$
9. $y = (x^{2} + 2)^{2}(x^{4} + 4)^{4}$
10. $y = (2x + 1)^{x}$