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Reminders/Announcements

» WebWork due Friday

> Written HW due today
» x-hour tomorrow:

» proofs of inverse trig derivatives
> examish exercises



Last Time

» Implicit differentiation

> (F)(a) =1/F(F1(a)

» Derivatives of inverse trigonometric functions
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< (arcsin x) revisited
Solution:

Let y = arcsinx. Thensiny = x and y € [-7/2,7/2]. Using
implicit differentiation (with respect to x) we get the equation

dy
Y.
(cosy)—
Solving this equation for y’ we obtain

dy 1
dx cosy’

Now, since y € [—m/2,7/2], we have cosy > 0 and
cosy = +41/1 —(siny)? = 1 — x2.
Thus

1
V1—x2

d
&(arcsin x) =
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Solution:
Let y = Inx so that & = x. Then by differentiating this equation
implicitly with respect to x we get

dy
v =L — 1.
€ dx

Solving this equation for % yields

dy 1 1

dx e x

The domain of this function is (0, c0). Do you see why?
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Solution:
This is exactly the same as the previous example

d 1
S(nlx]) =~

The only difference is that this derivative is valid on
(—00,0) U (0,00). Consider the graphs of In(x) and In|x]. ..
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Solution:
First note that

_nG)_ 1
~n(a) ~ In(a)

constant

In(x).

log,,(x)

Thus

£ oz = 5 (1))
1

d
n(a) dx (In(x))
1
n(a)
1

- xIn(a)

~—

X | =
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We saw in the previous slide that

d
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Just like the natural logarithm, this function (viewed as a
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1

d
a('oga x]) = xin(a)’

What domain is this function valid on?



Solution:
We saw in the previous slide that

d
a(loga(x)) = X In(a) .

Just like the natural logarithm, this function (viewed as a
derivative) is valid on the domain (0, 00). We also have that

1

d
a (Ioga ’X|) = xIn(a)'

What domain is this function valid on? (—o0,0) U (0, o0).
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Solution:
The hint is to write 8 = (€))% and use the chain rule.

%(aX) — d;‘;( ((eln(a))x)
_ d;dx (e(ln a)x)
= e(Max . (In a)

=(Ina)-a~.



Solution:
The hint is to write 8 = (€))% and use the chain rule.

d X d n(a)\x

(@) =2 (")
_ d;dx (e(lna)x>
— ellna)x (Ina)
=(Ina)-a~.

If a = e does this check out?
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Solution: b
The technique of logaritmic differentiation can be used to
dramatically simplify some derivative computations. We illustrate
this by differentiating the function y = ’(3(/3475@ First we take the
natural logarithm of both sides of the equation and simplify to get

In(y) = Z In(x) + % In(x2 + 1) — 5In(3x +2).

Now we differentiate implicitly (with respect to x) to get

y' 31 1 2x 3
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Logarithmic Differentiation

Solution: e X5
The technique of logaritmic differentiation can be used to
dramatically simplify some derivative computations. We illustrate

this by differentiating the function y = % First we take the
natural logarithm of both sides of the equation and simplify to get

In(y) = Z In(x) + % In(x2 + 1) — 5In(3x +2).

Now we differentiate implicitly (with respect to x) to get

y' 31 1 2x 3

y  4x  2x2+1 3x+2

Lastly, solve the equation for y’ by clearing y from the
denominator. Using logarithmic differentiation can turn incredibly
annoying computations into simple applications of the chain rule.
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The technique of logaritmic differentiation can be used to
dramatically simplify some derivative computations. We illustrate

this by differentiating the function y = ’(3(/3475— V+X22)+1 First we take the
natural logarithm of both sides of the equation and simplify to get

In(y) = Z In(x) + % In(x2 + 1) — 5In(3x +2).

Now we differentiate implicitly (with respect to x) to get

y' 31 1 2x 3

y  4x  2x2+1 3x+2

Lastly, solve the equation for y’ by clearing y from the
denominator. Using logarithmic differentiation can turn incredibly
annoying computations into simple applications of the chain rule.
It also allows us to compute derivatives of functions like
y=x%...



Logarithmic Differentiation

Solution: el
The technique of logaritmic differentiation can be used to
dramatically simplify some derivative computations. We illustrate

this by differentiating the function y = ’(3(/3475— V+X22)+1 First we take the
natural logarithm of both sides of the equation and simplify to get

In(y) = Z In(x) + % In(x2 + 1) — 5In(3x +2).

Now we differentiate implicitly (with respect to x) to get

y' 31 1 2x 3

y  4x  2x2+1 3x+2

Lastly, solve the equation for y’ by clearing y from the
denominator. Using logarithmic differentiation can turn incredibly
annoying computations into simple applications of the chain rule.
It also allows us to compute derivatives of functions like

y = x*...you just win.



Examish Exercises

Find the derivative of each function and the domain on which it is
valid.

1. y=In(x+5)
2. y=lIn|x+5|



Examish Exercises

f(x)=xInx—x
f(x) = sin(In x)
y=In %
g(x) = In(xe=%)
f(x) = logyo x
(x) = logyg v/x
y=2%
y = 52x—|—1
y = (x24+2)%(x* +4)*
=(2x 4+ 1)*
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