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d
dx (arcsin x) revisited

Solution:
Let y = arcsin x . Then sin y = x and y ∈ [−π/2, π/2]. Using
implicit differentiation (with respect to x) we get the equation

(cos y)dy
dx = 1.

Solving this equation for y ′ we obtain

dy
dx = 1

cos y .

Now, since y ∈ [−π/2, π/2], we have cos y ≥ 0 and

cos y = +
√

1− (sin y)2 =
√

1− x2.

Thus
d
dx (arcsin x) = 1√

1− x2
.
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d
dx (ln x)

Solution:

Let y = ln x so that ey = x . Then by differentiating this equation
implicitly with respect to x we get

ey dy
dx = 1.

Solving this equation for dy
dx yields

dy
dx = 1

ey = 1
x .

The domain of this function is (0,∞). Do you see why?
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d
dx (ln |x |)

Solution:
This is exactly the same as the previous example

d
dx (ln |x |) = 1

x .

The only difference is that this derivative is valid on
(−∞, 0) ∪ (0,∞). Consider the graphs of ln(x) and ln |x |. . .
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d
dx (loga x)

Solution:
First note that

loga(x) = ln(x)
ln(a) = 1

ln(a)︸ ︷︷ ︸
constant

· ln(x).

Thus

d
dx (loga(x)) = d

dx

( ln(x)
ln(a)

)
= 1

ln(a)
d
dx (ln(x))

= 1
ln(a) ·

1
x

= 1
x ln(a) .
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d
dx (ax )

Solution:
The hint is to write ax = (eln(a))x and use the chain rule.

d
dx (ax ) = d

dx
(

(eln(a))x
)

= d
dx
(

e(ln a)x
)

= e(ln a)x · (ln a)
= (ln a) · ax .

If a = e does this check out?
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Logarithmic Differentiation

Solution:
The technique of logaritmic differentiation can be used to
dramatically simplify some derivative computations. We illustrate
this by differentiating the function y = x3/4√x2+1

(3x+2)5 . First we take the
natural logarithm of both sides of the equation and simplify to get

ln(y) = 3
4 ln(x) + 1

2 ln(x2 + 1)− 5 ln(3x + 2).

Now we differentiate implicitly (with respect to x) to get

y ′
y = 3

4
1
x + 1

2
2x

x2 + 1 − 5 3
3x + 2 .

Lastly, solve the equation for y ′ by clearing y from the
denominator. Using logarithmic differentiation can turn incredibly
annoying computations into simple applications of the chain rule.
It also allows us to compute derivatives of functions like
y = xx . . . you just win.
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Examish Exercises

Find the derivative of each function and the domain on which it is
valid.

1. y = ln(x + 5)
2. y = ln |x + 5|



Examish Exercises

1. f (x) = x ln x − x
2. f (x) = sin(ln x)
3. y = ln 1

x
4. g(x) = ln(xe−2x )
5. f (x) = log10 x
6. h(x) = log10

√
x

7. y = 2x

8. y = 52x+1

9. y = (x2 + 2)2(x4 + 4)4

10. y = (2x + 1)x
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