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Implicitly defined functions

Implicitly defined functions are defined by an equation relating x
and y .

While explicitly defined functions can be put in the form
y = f (x), it may not be possible to do this with implicitly defined
functions. The classic example is the equation

x2 + y2 = 1.

What does the solution set of this equation look like? A circle!
How about y2 = x3 − x?
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Implicit Differentiation

Given an implicitly defined function, implicit differentiation is a
technique to find dy

dx even if we cannot write our function explicitly
in the form y = f (x).

The idea is to differentiate both sides of the defining equation
viewing y as a function of x and using the chain rule and solve the
resulting equation for y ′ = dy

dx .

The resulting expression for y ′ might end up being in terms of x
and y . When y ′ is evaluated at a point (x , y), the resulting
number represents the slope of the tangent line to the implicitly
defined curve at the point (x , y).
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Suppose x 2 + y 2 = 25. Find dy
dx .

Solution:
First we differentiate both sides of the defining equation with
respect to the variable x :

d
dx (x2 + y2) = d

dx (25)

and we get

d
dx (x2) + d

dx (y2) = 0.

For the first term on the LHS we have that d
dx (x2) = 2x , but what

about the term d
dx (y2)?
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Suppose x 2 + y 2 = 25. Find dy
dx .

Solution Continued:
Viewing y as a function of x , we proceed using the chain rule:

d
dx (y2) = 2y1 · d

dx (y)

= 2y · dy
dx

= 2y · y ′ (maybe you like this notation better).

Thus, the result of differentiating our implicit equation is

2x + 2y · y ′ = 0.

This is great because now we can solve this equation for y ′.
Finally, we get

dy
dx = y ′ = −2x

2y = −x
y .
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Suppose x 2 + y 2 = 25. Find tangent line at (3, 4).

Solution:

To write down an equation defining a line we need a point and a
slope.

We already have a point. The slope we desire is dy
dx

evaluated at the point (3, 4). Remember that dy
dx = − x

y . Thus the
slope of the tangent line to the circle at the point (3, 4) is −3/4.
The the tangent line can be described by the equation

y − 4 = −3
4(x − 3).
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Derivatives of Inverse Functions

If f is a one-to-one differentiable function with inverse function
f −1 and f ′(f −1(a)) 6= 0, then the inverse function is differentiable
at a and (

f −1
)′

(a) = 1
f ′
(
f −1(a)

) .



Let f (x) = 2x + cos(x). Find (f −1)′(1).

Solution:
First note that f ′(x) = 2− sin(x) which is always positive.

Now to
compute (f −1)′(1) we need to find f −1(1). That is, we want to
find x such that f (x) = 1. x = 0 works. Thus f −1(1) = 0. Now
using the previous slide we have that

(f −1)′(1) = 1
f ′(f −1(1))

= 1
f ′(0)

= 1
2− sin(0)

= 1
2− 0

= 1
2 .
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Derivatives of Inverse Trig Functions

d
dx (arcsin x) = 1√

1− x2
− 1 < x < 1

d
dx (arccos x) = − 1√

1− x2
− 1 < x < 1

d
dx (arctan x) = 1

1 + x2



Let y = arctan(x 2). Find y ′.

Solution:

y ′ = 1

1 +
(
x2
)2 · (x

2)′

= 2x
1 + x4 .
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Let y = 3 arccos(x/2). Find y ′.

Solution:

y ′ = −3 1√
1− (x/2)2

· (x/2)′

= − 3x
2
√

1− (x/2)2
.

If we also want to find the equation of the tangent line at the
point (1, π), then we simply evaluate y ′(1) = −

√
3. Then the

tangent line is defined by the equation

y − π = −
√

3(x − 1).
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Examish

1. Find dy
dx for the equation y2 = x3 − x .

2. Find dy
dx for the equation x3 + y3 = 6xy .

3. Find y ′ for the equation sin(x + y) = y2 cos(x).
4. Find the equation of the tangent line to the curve

x2 − xy − y2 = 1 at the point (2, 1).
5. Find the equation of the tangent line to the curve

x2 + y2 = (2x2 + 2y2 − x)2 at the point (0, 1/2).
6. Find the equation of the tangent line to the curve

x2/3 + y2/3 = 4 at the point
(
−3
√

3, 1
)

.



Examish

1. Let f (x) = 3x3 + 4x2 + 6x + 5 and a = 5. Find (f −1)′(a).
2. Let f (x) = x3 + 3 sin(x) + 2 cos(x) and a = 2. Find (f −1)′(a).
3. Let f (x) =

√
x3 + 4x + 4 and a = 3. Find (f −1)′(a).

4. Suppose f −1 is the inverse function of a differentiable
function f and f (4) = 5, f ′(4) = 2/3. Find (f −1)′(5).



Examish

1. Find the derivative of y = x arcsin(x) +
√

1− x2.

2. Find the derivative of y = arctan
√

1−x
1+x .

3. Find the derivative of f (θ) = arctan(cos(θ)).
4. Find y ′ if arctan(x2y) = x + xy2.
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