Math 1 Lecture 22

Dartmouth College

Monday 10-31-16

Contents

Reminders/Announcements

Last Time

Implicit Differentiation

Derivatives of Inverse Functions

Derivatives of Inverse Trigonometric Functions

Examish Exercises

Reminders/Announcements

- WebWork due Wednesday
- Quiz today
- Written HW due Wednesday

Last Time

- Chain Rule

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y.

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y. While explicitly defined functions can be put in the form $y=f(x)$, it may not be possible to do this with implicitly defined functions.

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y. While explicitly defined functions can be put in the form $y=f(x)$, it may not be possible to do this with implicitly defined functions. The classic example is the equation

$$
x^{2}+y^{2}=1
$$

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y. While explicitly defined functions can be put in the form $y=f(x)$, it may not be possible to do this with implicitly defined functions. The classic example is the equation

$$
x^{2}+y^{2}=1
$$

What does the solution set of this equation look like?

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y. While explicitly defined functions can be put in the form $y=f(x)$, it may not be possible to do this with implicitly defined functions. The classic example is the equation

$$
x^{2}+y^{2}=1
$$

What does the solution set of this equation look like? A circle!

Implicitly defined functions

Implicitly defined functions are defined by an equation relating x and y. While explicitly defined functions can be put in the form $y=f(x)$, it may not be possible to do this with implicitly defined functions. The classic example is the equation

$$
x^{2}+y^{2}=1
$$

What does the solution set of this equation look like? A circle! How about $y^{2}=x^{3}-x$?

Implicit Differentiation

Given an implicitly defined function, implicit differentiation is a technique to find $\frac{d y}{d x}$ even if we cannot write our function explicitly in the form $y=f(x)$.

Implicit Differentiation

Given an implicitly defined function, implicit differentiation is a technique to find $\frac{d y}{d x}$ even if we cannot write our function explicitly in the form $y=f(x)$.

The idea is to differentiate both sides of the defining equation viewing y as a function of x and using the chain rule and solve the resulting equation for $y^{\prime}=\frac{d y}{d x}$.

Implicit Differentiation

Given an implicitly defined function, implicit differentiation is a technique to find $\frac{d y}{d x}$ even if we cannot write our function explicitly in the form $y=f(x)$.

The idea is to differentiate both sides of the defining equation viewing y as a function of x and using the chain rule and solve the resulting equation for $y^{\prime}=\frac{d y}{d x}$.

The resulting expression for y^{\prime} might end up being in terms of x and y. When y^{\prime} is evaluated at a point (x, y), the resulting number represents the slope of the tangent line to the implicitly defined curve at the point (x, y).

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution:

First we differentiate both sides of the defining equation with respect to the variable x :

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution:

First we differentiate both sides of the defining equation with respect to the variable x :

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25)
$$

and we get

$$
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=0
$$

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution:

First we differentiate both sides of the defining equation with respect to the variable x :

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25)
$$

and we get

$$
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=0
$$

For the first term on the LHS we have that $\frac{d}{d x}\left(x^{2}\right)=2 x$, but what about the term $\frac{d}{d x}\left(y^{2}\right)$?

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution Continued:

Viewing y as a function of x, we proceed using the chain rule:

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution Continued:

Viewing y as a function of x, we proceed using the chain rule:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =2 y^{1} \cdot \frac{d}{d x}(y) \\
& =2 y \cdot \frac{d y}{d x} \\
& =2 y \cdot y^{\prime} \text { (maybe you like this notation better). }
\end{aligned}
$$

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution Continued:

Viewing y as a function of x, we proceed using the chain rule:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =2 y^{1} \cdot \frac{d}{d x}(y) \\
& =2 y \cdot \frac{d y}{d x} \\
& =2 y \cdot y^{\prime} \text { (maybe you like this notation better). }
\end{aligned}
$$

Thus, the result of differentiating our implicit equation is

$$
2 x+2 y \cdot y^{\prime}=0
$$

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution Continued:

Viewing y as a function of x, we proceed using the chain rule:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =2 y^{1} \cdot \frac{d}{d x}(y) \\
& =2 y \cdot \frac{d y}{d x} \\
& =2 y \cdot y^{\prime} \text { (maybe you like this notation better). }
\end{aligned}
$$

Thus, the result of differentiating our implicit equation is

$$
2 x+2 y \cdot y^{\prime}=0
$$

This is great because now we can solve this equation for y^{\prime}.

Suppose $x^{2}+y^{2}=25$. Find $\frac{d y}{d x}$.

Solution Continued:

Viewing y as a function of x, we proceed using the chain rule:

$$
\begin{aligned}
\frac{d}{d x}\left(y^{2}\right) & =2 y^{1} \cdot \frac{d}{d x}(y) \\
& =2 y \cdot \frac{d y}{d x} \\
& =2 y \cdot y^{\prime} \text { (maybe you like this notation better). }
\end{aligned}
$$

Thus, the result of differentiating our implicit equation is

$$
2 x+2 y \cdot y^{\prime}=0
$$

This is great because now we can solve this equation for y^{\prime}.
Finally, we get

$$
\frac{d y}{d x}=y^{\prime}=-\frac{2 x}{2 y}=-\frac{x}{y}
$$

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope.

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope. We already have a point.

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope. We already have a point. The slope we desire is $\frac{d y}{d x}$ evaluated at the point $(3,4)$.

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope. We already have a point. The slope we desire is $\frac{d y}{d x}$ evaluated at the point $(3,4)$. Remember that $\frac{d y}{d x}=-\frac{x}{y}$.

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope. We already have a point. The slope we desire is $\frac{d y}{d x}$ evaluated at the point $(3,4)$. Remember that $\frac{d y}{d x}=-\frac{x}{y}$. Thus the slope of the tangent line to the circle at the point $(3,4)$ is $-3 / 4$.

Suppose $x^{2}+y^{2}=25$. Find tangent line at $(3,4)$.

Solution:

To write down an equation defining a line we need a point and a slope. We already have a point. The slope we desire is $\frac{d y}{d x}$ evaluated at the point $(3,4)$. Remember that $\frac{d y}{d x}=-\frac{x}{y}$. Thus the slope of the tangent line to the circle at the point $(3,4)$ is $-3 / 4$.
The the tangent line can be described by the equation

$$
y-4=-\frac{3}{4}(x-3)
$$

Derivatives of Inverse Functions

If f is a one-to-one differentiable function with inverse function f^{-1} and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function is differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$.

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive.

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive. Now to compute $\left(f^{-1}\right)^{\prime}(1)$ we need to find $f^{-1}(1)$.

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$.

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive. Now to compute $\left(f^{-1}\right)^{\prime}(1)$ we need to find $f^{-1}(1)$. That is, we want to find x such that $f(x)=1$.

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive. Now to compute $\left(f^{-1}\right)^{\prime}(1)$ we need to find $f^{-1}(1)$. That is, we want to find x such that $f(x)=1 . x=0$ works.

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive. Now to compute $\left(f^{-1}\right)^{\prime}(1)$ we need to find $f^{-1}(1)$. That is, we want to find x such that $f(x)=1$. $x=0$ works. Thus $f^{-1}(1)=0$.

Let $f(x)=2 x+\cos (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$

Solution:

First note that $f^{\prime}(x)=2-\sin (x)$ which is always positive. Now to compute $\left(f^{-1}\right)^{\prime}(1)$ we need to find $f^{-1}(1)$. That is, we want to find x such that $f(x)=1$. $x=0$ works. Thus $f^{-1}(1)=0$. Now using the previous slide we have that

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(1) & =\frac{1}{f^{\prime}\left(f^{-1}(1)\right)} \\
& =\frac{1}{f^{\prime}(0)} \\
& =\frac{1}{2-\sin (0)} \\
& =\frac{1}{2-0} \\
& =\frac{1}{2} .
\end{aligned}
$$

Derivatives of Inverse Trig Functions

$$
\begin{aligned}
\frac{d}{d x}(\arcsin x) & =\frac{1}{\sqrt{1-x^{2}}} \quad-1<x<1 \\
\frac{d}{d x}(\arccos x) & =-\frac{1}{\sqrt{1-x^{2}}} \quad-1<x<1 \\
\frac{d}{d x}(\arctan x) & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Let $y=\arctan \left(x^{2}\right)$. Find y^{\prime}.

Solution:

$$
\begin{aligned}
y^{\prime} & =\frac{1}{1+\left(x^{2}\right)^{2}} \cdot\left(x^{2}\right)^{\prime} \\
& =\frac{2 x}{1+x^{4}} .
\end{aligned}
$$

Let $y=3 \arccos (x / 2)$. Find y^{\prime}.

Let $y=3 \arccos (x / 2)$. Find y^{\prime}.

Solution:

$$
\begin{aligned}
y^{\prime} & =-3 \frac{1}{\sqrt{1-(x / 2)^{2}}} \cdot(x / 2)^{\prime} \\
& =-\frac{3 x}{2 \sqrt{1-(x / 2)^{2}}}
\end{aligned}
$$

Let $y=3 \arccos (x / 2)$. Find y^{\prime}.

Solution:

$$
\begin{aligned}
y^{\prime} & =-3 \frac{1}{\sqrt{1-(x / 2)^{2}}} \cdot(x / 2)^{\prime} \\
& =-\frac{3 x}{2 \sqrt{1-(x / 2)^{2}}}
\end{aligned}
$$

If we also want to find the equation of the tangent line at the point $(1, \pi)$, then we simply evaluate $y^{\prime}(1)=-\sqrt{3}$.

Let $y=3 \arccos (x / 2)$. Find y^{\prime}.

Solution:

$$
\begin{aligned}
y^{\prime} & =-3 \frac{1}{\sqrt{1-(x / 2)^{2}}} \cdot(x / 2)^{\prime} \\
& =-\frac{3 x}{2 \sqrt{1-(x / 2)^{2}}}
\end{aligned}
$$

If we also want to find the equation of the tangent line at the point $(1, \pi)$, then we simply evaluate $y^{\prime}(1)=-\sqrt{3}$. Then the tangent line is defined by the equation

$$
y-\pi=-\sqrt{3}(x-1)
$$

1. Find $\frac{d y}{d x}$ for the equation $y^{2}=x^{3}-x$.
2. Find $\frac{d y}{d x}$ for the equation $x^{3}+y^{3}=6 x y$.
3. Find y^{\prime} for the equation $\sin (x+y)=y^{2} \cos (x)$.
4. Find the equation of the tangent line to the curve $x^{2}-x y-y^{2}=1$ at the point $(2,1)$.
5. Find the equation of the tangent line to the curve $x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}$ at the point $(0,1 / 2)$.
6. Find the equation of the tangent line to the curve $x^{2 / 3}+y^{2 / 3}=4$ at the point $(-3 \sqrt{3}, 1)$.

Examish

1. Let $f(x)=3 x^{3}+4 x^{2}+6 x+5$ and $a=5$. Find $\left(f^{-1}\right)^{\prime}(a)$.
2. Let $f(x)=x^{3}+3 \sin (x)+2 \cos (x)$ and $a=2$. Find $\left(f^{-1}\right)^{\prime}(a)$.
3. Let $f(x)=\sqrt{x^{3}+4 x+4}$ and $a=3$. Find $\left(f^{-1}\right)^{\prime}(a)$.
4. Suppose f^{-1} is the inverse function of a differentiable function f and $f(4)=5, f^{\prime}(4)=2 / 3$. Find $\left(f^{-1}\right)^{\prime}(5)$.

Examish

1. Find the derivative of $y=x \arcsin (x)+\sqrt{1-x^{2}}$.
2. Find the derivative of $y=\arctan \sqrt{\frac{1-x}{1+x}}$.
3. Find the derivative of $f(\theta)=\arctan (\cos (\theta))$.
4. Find y^{\prime} if $\arctan \left(x^{2} y\right)=x+x y^{2}$.
