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The Chain Rule

We have yet to talk about how derivatives behave with regards to
compositions of functions.

Let h(x) = (f ◦ g)(x) = f (g(x)) and
suppose g is differentiable at x and f is differentiable at g(x).
Then the chain rule states that

h′(x) = f ′(g(x)) · g ′(x) .

A proof of this is beyond the scope of this course, but learning how
to apply this will enable us to compute many more examples.
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Alternative Formulation

We can also state the chain rule using slightly different notation

which may or may not be helpful!

Let y = f (u) and u = g(x) (both differentiable). Then an
alternative formulation of the chain rule says that

dy
dx = dy

du ·
du
dx .
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Compute the derivative of h(x) = ex3−x .

Solution:
We can write h(x) = f (g(x)) with f (x) = ex and g(x) = x3 − x .
By basic derivative rules we have

f ′(x) = ex

g ′(x) = 3x2 − 1.

The chain rule allows us to put this all together to find h′(x). By
the chain rule,

h′(x) = f ′(g(x)) · g ′(x)
= eg(x) · (3x2 − 1)

= ex3−x · (3x2 − 1).
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Compute the derivative of h(x) =
√

3x − 5.

Solution:
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2
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x
g ′(x) = 3.
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Exercises (Basic)

1. y = sin(πx)
2. y = sin(cos(x))

3. y =
(
x + 1

x2

)√7

4. y = (1− x−1)−1



Exercises (Examish)

1. f (x) = sin(ex )
2. g(x) = tan(x2 − 5)
3. h(x) = esin(2x)

4. y = 5
√

x2 − sin(x)

5. y = 1
5
√

x2−sin(x)

6. s(t) = sec(t2 − 3)
7. x(t) = 2t + 1√

3t2+5t+7

8. y(t) = tan(1 + sin(t2))



Exercises (Hard. . . or maybe just plain annoying?)

1. h(x) = (x3 − x)ex2 cos(2x − 5)

2. k(x) = ex2

(x3−x) cos(2x−5)

3. y =
(

sin
(

cos
(√

sin(πx)
)))2



Practice Quiz!

Find the derivatives of the functions given below.

1. f (x) = e2x+1 cos(x)
2. g(x) = cos(ex )
3. h(x) = sin(x3 − x)
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