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Reminders/Announcements

I WebWork due Friday
I x-hour problem session drop in Thursday
I Quiz Monday
I Turn in “MidQuarter” surveys
I Turn in Written Homework
I Office hours today 1pm - 3pm



Last Time

I Derivatives of products and quotients
I Higher derivatives

Let’s look at a couple practice problems from last time. . .
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For what values of x does the graph of f (x) = x3 + 3x2 + x + 3
have a horizontal tangent line?

Also, compute

d2

dx2 (f (x)), d3

dx3 (f (x)), and d4

dx4 (f (x)).
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Suppose h(2) = 4, h′(2) = −3, and h′′(2) = 1. Compute the
following values:
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sin x
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2 2π

Let f (x) = sin(x). What is f ′(0)? What is f ′(π/2)? How does
this value relate to the function cos(x)?
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By observations on the previous slide we might guess that

d
dx (sin(x)) = cos(x)

d
dx (cos(x)) = − sin(x).

It is beyond the scope of this course to verify these via the
definition, but we do need to be able to use these rules to compute
examples.
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Note that we can compute the derivatives of all 6 trigonometric
functions using the previous slide and the quotient rule.

d
dx (sin x) = cos x

d
dx (cos x) = − sin x

d
dx (tan x) = (sec x)2

d
dx (cot x) = −(csc x)2

d
dx (sec x) = sec x tan x

d
dx (csc x) = − csc x cot x .

As an exercise let’s verify a few of these!
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Computational Examples

1. f (x) = x2 sin x

2. f (θ) = sin θ
1 + cos θ

3. s(t) = et sin t

4. y = t sin t
1 + t2



Let y = x + tan x . Find an equation of the line tangent to the
graph of this function at the point (π, π).

Solution:
f ′(x) = 1 + (sec x)2 and f ′(π) = 2. Thus we are looking for a line
through the point (π, π) with slope 2. Such a line is given by

y − π = 2(x − π).
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Find constants A and B such that the function
y = A sin x + B cos x satisfies the equation y ′′ + y ′ − 2y = sin x .

Solution:
First compute y ′ and y ′′ and collect terms in the expression for
y ′′ + y ′ − 2y . Then compare coefficients to get 2 equations
involving the unknown values A and B. Solve one equation for one
of the unknowns in terms of the other one. Substitute into the
other equation. Then you win. We find that A = −3/10 and
B = −1/10.
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