Math 1 Lecture 18

Dartmouth College

Friday 10-21-16

Contents

Reminders/Announcements

Last Time

Differentiation Rules

The Derivative of $f(x)=e^{x}$

Examples as Time Permits

Reminders/Announcements

- WebWork due Monday
- Quiz Monday

Last Time

Given a function $y=f(x)$, we defined a new function $f^{\prime}(x)$ via the following limit definition:

Last Time

Given a function $y=f(x)$, we defined a new function $f^{\prime}(x)$ via the following limit definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Last Time

Given a function $y=f(x)$, we defined a new function $f^{\prime}(x)$ via the following limit definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We called this new function "the derivative of f " and denote it in several different ways:

Last Time

Given a function $y=f(x)$, we defined a new function $f^{\prime}(x)$ via the following limit definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We called this new function "the derivative of f " and denote it in several different ways:

$$
f^{\prime}(x)=\frac{d}{d x}(f(x))=\frac{d y}{d x}=D_{x}(f(x))
$$

Last Time

Given a function $y=f(x)$, we defined a new function $f^{\prime}(x)$ via the following limit definition:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We called this new function "the derivative of f " and denote it in several different ways:

$$
f^{\prime}(x)=\frac{d}{d x}(f(x))=\frac{d y}{d x}=D_{x}(f(x))
$$

Today we will start to see how we can use rules about derivatives to compute them more efficiently.

Derivatives of Constant Functions

Suppose we have a constant function $f(x)=c$. What is $f^{\prime}(x)$?

Derivatives of Constant Functions

Suppose we have a constant function $f(x)=c$. What is $f^{\prime}(x)$? It's zero!

Derivatives of Constant Functions

Suppose we have a constant function $f(x)=c$. What is $f^{\prime}(x)$? It's zero! We summarize this as follows:

$$
\frac{d}{d x}(c)=0
$$

Derivatives of Power Functions

Suppose we have a power function $f(x)=x^{r}$ where r is a fixed real number.

Derivatives of Power Functions

Suppose we have a power function $f(x)=x^{r}$ where r is a fixed real number. Then

$$
\frac{d}{d x}\left(x^{r}\right)=r \cdot x^{r-1}
$$

Derivatives of Sums and Constant Multiples

Let f, g be differentiable functions and c a constant.

Derivatives of Sums and Constant Multiples

Let f, g be differentiable functions and c a constant. Then we have the following:

Derivatives of Sums and Constant Multiples

Let f, g be differentiable functions and c a constant. Then we have the following:

$$
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))
$$

Derivatives of Sums and Constant Multiples

Let f, g be differentiable functions and c a constant. Then we have the following:

$$
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))
$$

$$
\frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x}(f(x))
$$

To Summarize. . .

$$
\begin{gathered}
\frac{d}{d x}(c)=0 \\
\frac{d}{d x}\left(x^{r}\right)=r x^{r-1} \\
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x)) \\
\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))
\end{gathered}
$$

Computation Examples

Find the derivative of each function given below.

$$
\begin{aligned}
& \text { 1. } f(t)=2 t^{3}-3 t^{2}-4 t \\
& \text { 2. } y=x^{5 / 3}-x^{2 / 3} \\
& \text { 3. } y=\frac{x^{2}+4 x+3}{\sqrt{x}} \\
& \text { 4. } f(x)=\pi^{4} \\
& \text { 5. } u=\left(\frac{1}{t}-\frac{1}{\sqrt{t}}\right)^{2}
\end{aligned}
$$

The equation of motion of a particle is $s(t)=t^{3}-3 t$ where s is in meters and t is in seconds.

The equation of motion of a particle is $s(t)=t^{3}-3 t$ where s is in meters and t is in seconds.

1. Find the velocity $v(t)$ as a function of t.
2. How fast is the particle moving when $t=2$?

The equation of motion of a particle is $s(t)=t^{3}-3 t$ where s is in meters and t is in seconds.

1. Find the velocity $v(t)$ as a function of t.
2. How fast is the particle moving when $t=2$?

Solution:

$v(t)=s^{\prime}(t)=3 t^{2}-3$, so the velocity of the particle after 2 seconds is $v(2)=s^{\prime}(2)=3 \cdot 2^{2}-3=9$ meters per second.

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years.

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Compute

$$
\left.\frac{d L}{d A}\right|_{A=12}
$$

What is this value supposed to represent in the context of the problem?

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Compute

$$
\left.\frac{d L}{d A}\right|_{A=12}
$$

What is this value supposed to represent in the context of the problem?

Solution:

This is just notation asking you to first compute the function L^{\prime} and then plug in 12 to get $L^{\prime}(12)$.

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Compute

$$
\left.\frac{d L}{d A}\right|_{A=12}
$$

What is this value supposed to represent in the context of the problem?

Solution:

This is just notation asking you to first compute the function L^{\prime} and then plug in 12 to get $L^{\prime}(12)$. Using derivative rules we see that
$L^{\prime}(A)=3(0.0155) A^{2}-2(0.372) A+3.95=0.0465 A^{2}-0.744 A+3.95$.

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Compute

$$
\left.\frac{d L}{d A}\right|_{A=12}
$$

What is this value supposed to represent in the context of the problem?

Solution:

This is just notation asking you to first compute the function L^{\prime} and then plug in 12 to get $L^{\prime}(12)$. Using derivative rules we see that
$L^{\prime}(A)=3(0.0155) A^{2}-2(0.372) A+3.95=0.0465 A^{2}-0.744 A+3.95$.
Now $L^{\prime}(12)=1.718$.

Biologists have proposed a cubic polynomial to model the length L of Alaskan rockrish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Compute

$$
\left.\frac{d L}{d A}\right|_{A=12} .
$$

What is this value supposed to represent in the context of the problem?

Solution:

This is just notation asking you to first compute the function L^{\prime} and then plug in 12 to get $L^{\prime}(12)$. Using derivative rules we see that

$$
L^{\prime}(A)=3(0.0155) A^{2}-2(0.372) A+3.95=0.0465 A^{2}-0.744 A+3.95
$$

Now $L^{\prime}(12)=1.718$. This number represents the rate at which the length of the fish is changing when it is 12 years old.

Derivatives of Exponential Functions

Let $f(x)=a^{x}$ for some $a>0$.

Derivatives of Exponential Functions

Let $f(x)=a^{x}$ for some $a>0$. Then by definition we have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0}\left(a^{x} \cdot \frac{a^{h}-1}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(a^{x}\right) \cdot \lim _{h \rightarrow 0}\left(\frac{a^{h}-1}{h}\right) \\
& =a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
& =a^{x} \cdot f^{\prime}(0) .
\end{aligned}
$$

Definition of $e=2.718281828459 \ldots$

As we saw in the previous slide, The derivative of the exponential function $f(x)=a^{x}$ depends only on the value of $f^{\prime}(0)$.

Definition of $e=2.718281828459 \ldots$

As we saw in the previous slide, The derivative of the exponential function $f(x)=a^{x}$ depends only on the value of $f^{\prime}(0)$. Let e be the unique positive real number such that the exponential function $f(x)=e^{x}$ satisfies

$$
1=f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h} .
$$

Definition of $e=2.718281828459 \ldots$

As we saw in the previous slide, The derivative of the exponential function $f(x)=a^{x}$ depends only on the value of $f^{\prime}(0)$. Let e be the unique positive real number such that the exponential function $f(x)=e^{x}$ satisfies

$$
1=f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

Derivative of e^{x}

Why did we make such a strange definition?

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide.

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide. Using what we know about exponential functions we see that

$$
\frac{d}{d x}\left(e^{x}\right)=f^{\prime}(0) \cdot e^{x}
$$

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide. Using what we know about exponential functions we see that

$$
\frac{d}{d x}\left(e^{x}\right)=f^{\prime}(0) \cdot e^{x}
$$

But

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

by definition of the number e.

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide. Using what we know about exponential functions we see that

$$
\frac{d}{d x}\left(e^{x}\right)=f^{\prime}(0) \cdot e^{x}
$$

But

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

by definition of the number e. Thus $f^{\prime}(x)=f(x)$.

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide. Using what we know about exponential functions we see that

$$
\frac{d}{d x}\left(e^{x}\right)=f^{\prime}(0) \cdot e^{x}
$$

But

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

by definition of the number e. Thus $f^{\prime}(x)=f(x)$. We've constructed a function whose derivative is itself!

Derivative of e^{x}

Why did we make such a strange definition? Well, suppose we have this exponential function $f(x)=e^{x}$ wich e as defined on the previous slide. Using what we know about exponential functions we see that

$$
\frac{d}{d x}\left(e^{x}\right)=f^{\prime}(0) \cdot e^{x}
$$

But

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

by definition of the number e. Thus $f^{\prime}(x)=f(x)$. We've constructed a function whose derivative is itself! In Summary,

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Compute the derivative of $y=3 e^{x+2}+x^{e}$.

Compute the derivative of $y=3 e^{x+2}+x^{e}$. Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d x}\left(3 e^{x+2}+x^{e}\right) \\
& =\frac{d y}{d x}\left(3 \cdot e^{2} \cdot e^{x}+x^{e}\right) \\
& =\frac{d y}{d x}\left(3 \cdot e^{2} \cdot e^{x}\right)+\frac{d y}{d x}\left(x^{e}\right) \\
& =3 e^{2} \cdot \frac{d y}{d x}\left(e^{x}\right)+\frac{d y}{d x}\left(x^{e}\right) \\
& =3 e^{2} e^{x}+e x^{e-1}
\end{aligned}
$$

Consider the function

$$
f(x)=\frac{5}{3} x^{3}-\frac{5}{2} x^{2}-10 x
$$

Consider the function

$$
f(x)=\frac{5}{3} x^{3}-\frac{5}{2} x^{2}-10 x
$$

- Find $f^{\prime}(x)$.
- Solve $f^{\prime}(x)=0$.
- Find the interval(s) where $f^{\prime}(x)>0$.
- Find the interval(s) where $f^{\prime}(x)<0$.

Have a great weekend!

